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     12.1  Inference about the 
Regression Model   

    12.2  Using the 
Regression Line   

    12.3  Some Details 
of Regression 
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      12  
 Inference for Regression    

    Introduction  

 One of the most common uses of statistical methods in business and econom-
ics is to predict, or forecast, a response based on one or several explanatory 
(predictor) variables. In predictive analytics, these forecasts are then used by 
companies to make decisions. Here are some examples: 

 ●    Lime uses the day of the week, hour of the day, and current weather forecast 
to predict scooter- and bike-sharing demand around a city. This information is 
incorporated into the company’s nightly redistribution strategy.  

 ●   Amazon wants to describe the relationship between dollars spent in its Digital 
Music department and dollars spent in its Online Grocery department by 18- to 
25-year-olds this past year. This information will be used to determine a new 
advertising strategy.  

 ●   Panera Bread, when looking for a new store location, develops a model to predict 
profitability using the amount of traffic near the store, the proximity to competitive 
restaurants, and the average income level of the neighborhood.   

 Prediction is most straightforward when there is a straight-line relation-
ship between a quantitative response variable   y   and a single quantitative 
explanatory variable   x  . This is    simple linear regression    ,  the topic of this 
chapter. In  Chapter 13 , we will consider the more common setting involving 
more than one explanatory (predictor) variable. Because both settings share 
many of the same ideas, we introduce inference for regression under the sim-
ple setting. 

    simple linear regression      
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570 Chapter 12 Inference for Regression

data entry software. Group 1 received no training, Group 2 received one 
hour of hands-on training, and Group 3 attended an hour-long presentation 
describing the entry process. Entries per hour is the response variable   y  . 
Treatment (or type of training) is the explanatory variable. The model has two 
important parts: 

 ●      The mean entries per hour may be different in the three populations. These 
means are   µ µ,1 2   and   µ3   in  Figure 12.1 .  

 ●   Individual entries per hour vary within each population according to a 
Normal distribution. The three Normal curves in  Figure 12.1  describe these 
responses. These Normal distributions have the same spread, indicating that 
the population standard deviations are assumed to be equal.   

    Statistical model for simple linear regression   
 In linear regression, the explanatory variable   x   is quantitative and can have 
many different values. Imagine, for example, giving different lengths   x   of 
hands-on training to different groups of clerks. We can think of these groups 
as belonging to    subpopulations    ,  one for each possible value of   x  . Each sub-
population consists of all individuals in the population having the same value 
of   x  . If we gave   x = 1   hour of training to some subjects,   x = 2   hours of train-
ing to some others, and   x = 4   hours of training to some others, these three 
groups of subjects would be considered samples from the corresponding three 
subpopulations. 

 The statistical model for simple linear regression assumes that, for each 
value of   x   (or subpopulation), the response variable   y   is Normally distributed 
with a mean that depends on   x  . We use   µy   to represent these means. In gen-
eral, the means   µy   can change as   x   changes according to any sort of pattern. 
In simple linear regression, we assume that the means all lie on a line when 
plotted against   x  . 

 To summarize, this model has two important parts: 

 ●    The mean entries per hour   µy   changes as the number of training hours   x   
changes and these means all lie on a straight line; that is,   µ β β= + xy 0 1   .  

 ●   Individual entries per hour   y   for subjects with the same amount of training 
  x   vary according to a Normal distribution. This variation, measured by the 
standard deviation   σ  , is the same for all values of   x  .   

  Figure 12.2   illustrates this statistical model. The line describes how the 
mean response   µy   changes with   x  ; it is called the    population regression line.    
The three Normal curves show how the response   y   will vary for three differ-
ent values of the explanatory variable   x  . Each curve is centered at its mean 
response   µy  . All three curves have the same spread, measured by their com-
mon standard deviation   σ.   

      the one-way 
ANOVA model,   

   p. 465   

    subpopulation      

    population regression line      

   In  Chapter 2 , we saw that the least-squares line can be used to predict   y   
for a given value of   x  . Now we consider the use of significance tests and con-
fidence intervals in this setting. To do this, we will think of the least-squares 
line,   +b b x0 1   , as an estimate of a regression line for the population—just as in 
 Chapter 8 , where we viewed the sample mean   x   as the estimate of the popula-
tion mean   µ  , and in  Chapter 10 , where we viewed the sample proportion   p̂   as 
the estimate for the population proportion   p  . 

 We write the population regression line as   β β+ x0 1   . The numbers   β0   and   β1   
are  parameters  that describe this population line. The numbers   b0   and   b1   are 
 statistics  calculated by fitting a line to a sample. The fitted intercept   b0   esti-
mates the intercept of the population line   β0  , and the fitted slope   b1   estimates 
the slope of the population line   β1  . 

 Our discussion begins with an overview of the simple linear regression 
model and inference about the slope   β1   and the intercept   β0  . Because regres-
sion lines are most often used for prediction, we then consider inference about 
either the mean response or an individual future observation on   y   for a given 
value of the explanatory variable   x  . We conclude the chapter with more of the 
computational details, including the use of analysis of variance (ANOVA). If 
you plan to read  Chapter 13  on regression involving more than one explana-
tory variable, these details will be very useful.  

    12.1    Inference about the Regression Model  

      least-squares line,    
   p. 83   

      parameters and 
statistics,      p. 295   

      ANOVA,      p. 458   

   When you complete 
this section, you will 
be able to:  

 ●    Describe the simple linear regression model in terms of a population 
regression line and the distribution of deviations of the response variable   y   
from this line.  

 ●   Use linear regression output from statistical software to find the least-
squares regression line and estimated regression standard deviation.  

 ●   Use plots of the residuals to visually check the assumptions of the simple 
linear regression model.  

 ●   Construct and interpret a confidence interval for the population intercept 
and for the population slope.  

 ●   Perform a significance test for the population intercept and for the 
population slope and summarize the results.    

 Simple linear regression studies the relationship between a quantitative 
response variable   y   and a quantitative explanatory variable   x  . We expect that 
different values of   x   will be associated with different mean responses for   y  . We 
encountered a situation similar to this in  Chapter 9 , when we considered the 
possibility that different treatment groups had different mean responses. 

  Figure 12.1   illustrates the statistical model from  Chapter 9  for compar-
ing the items per hour entered by three groups of financial clerks using new 

     FIGURE   12.1  The statistical 
model for comparing the 
responses to three treatments. 
The responses vary within each 
treatment group according to a 
Normal distribution. The mean 
may be different in the three 
treatment groups.  
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57112.1 Inference about the Regression Model

data entry software. Group 1 received no training, Group 2 received one 
hour of hands-on training, and Group 3 attended an hour-long presentation 
describing the entry process. Entries per hour is the response variable y. 
Treatment (or type of training) is the explanatory variable. The model has two 
important parts:

●● The mean entries per hour may be different in the three populations. These 
means are µ µ,1 2 and µ3 in Figure 12.1.

●● Individual entries per hour vary within each population according to a 
Normal distribution. The three Normal curves in Figure 12.1 describe these 
responses. These Normal distributions have the same spread, indicating that 
the population standard deviations are assumed to be equal.

Statistical model for simple linear regression
In linear regression, the explanatory variable x is quantitative and can have 
many different values. Imagine, for example, giving different lengths x of 
hands-on training to different groups of clerks. We can think of these groups 
as belonging to subpopulations, one for each possible value of x. Each sub-
population consists of all individuals in the population having the same value 
of x. If we gave x = 1 hour of training to some subjects, x = 2 hours of train-
ing to some others, and x = 4 hours of training to some others, these three 
groups of subjects would be considered samples from the corresponding three 
subpopulations.

The statistical model for simple linear regression assumes that, for each 
value of x (or subpopulation), the response variable y is Normally distributed 
with a mean that depends on x. We use µy to represent these means. In gen-
eral, the means µy can change as x changes according to any sort of pattern. 
In simple linear regression, we assume that the means all lie on a line when 
plotted against x.

To summarize, this model has two important parts:

●● The mean entries per hour µy changes as the number of training hours x 
changes and these means all lie on a straight line; that is, µ β β= + xy 0 1 .

●● Individual entries per hour y for subjects with the same amount of training 
x vary according to a Normal distribution. This variation, measured by the 
standard deviation σ, is the same for all values of x.

Figure 12.2 illustrates this statistical model. The line describes how the 
mean response µy changes with x; it is called the population regression line. 
The three Normal curves show how the response y will vary for three differ-
ent values of the explanatory variable x. Each curve is centered at its mean 
response µy. All three curves have the same spread, measured by their com-
mon standard deviation σ.

the one-way 
ANOVA model, 

p. 465

subpopulation

population regression line

FIGURE 12.2  The statistical 
model for linear regression. 
The responses vary within 
each subpopulation according 
to a Normal distribution. The 
mean response is a straight-
line function of the explanatory 
variable.
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572 Chapter 12 Inference for Regression

       From data analysis to inference   
 The data for a simple linear regression problem are the   n   pairs of (  x  ,  y  ) obser-
vations. The model takes each   x   to be a fixed known quantity, like the hours 
of training that a clerk receives. 1  The response   y   for a given   x   is a Normal ran-
dom variable. Our regression model describes the mean and standard devia-
tion of this random variable. 

 We will use  Case 12.1  to explain the fundamentals of simple linear regres-
sion. In practice, regression calculations are always done by software, so we rely 
on computer output for the arithmetic. Later in the chapter, we show formulas 
for doing the calculations. These formulas are useful in understanding analysis 
of variance (see  Section 12.3 ) and multiple regression (see  Chapter 13 ).    

    The Relationship between Income and Education for Entrepreneurs   
 Numerous studies have shown that better-educated employees have 

higher incomes. Is this also true for entrepreneurs? Does more years of formal 
education translate into higher income? We know about the extremely suc-
cessful entrepreneurs, such as Oprah Winfrey and her amazing rags-to-riches 
story. Cases like this, however, are anecdotal and most likely not representative 
of the population of entrepreneurs. One study explored this question using the 
National Longitudinal Survey of Youth (NLSY), which followed a large group 
of individuals aged 14 to 22 for roughly 10 years. 2  The researchers studied 
both employees and entrepreneurs, but we just focus on entrepreneurs here. 

   The researchers defined  entrepreneurs  as those individuals who were 
self-employed or who were the owner/director of an incorporated business. 
For each of these individuals, they recorded the education level and income. 
The education level (Educ) was defined as the years of completed schooling 
prior to starting the business. The income level (Inc) was the average annual 
total earnings since starting the business. 

 We consider a random sample of 100 entrepreneurs.  Figure 12.3   is a scat-
terplot of the data with a fitted smoothed curve to help us visualize the rela-
tionship. The explanatory variable   x   is the entrepreneur’s education level. The 
response variable   y   is the income level. ■ 

    Let’s briefly review some of the ideas from  Chapter 2  regarding least-
squares regression. We always start with a plot of the data, as in  Figure 12.3 , 

 ENTRE 

  smoothed curve,   
   p. 69   

 CASE 
12.1 

     FIGURE   12.3  Scatterplot, with 
smoothed curve, of average 
annual income versus years of 
education for a sample of 100 
entrepreneurs.  
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57312.1 Inference about the Regression Model

to verify that the relationship is approximately linear with no outliers. There 
is no point in fitting a linear model if the relationship does not, at least approx-
imately, appear linear. For the data of  Case 12.1 , the smoothed curve looks 
roughly linear but the distributions of incomes about it are skewed to the 
right. At each education level, there are many small incomes and just a few 
very large incomes. It also looks like the smoothed curve is being pulled 
toward those very large incomes, suggesting those observations could be 
influential. 

 A common remedy for a skewed variable such as income is to consider 
transforming it prior to fitting a model. Here, the researchers considered the 
natural logarithm of income (Loginc).  Figure 12.4   is a scatterplot of Loginc 
versus Educ with a fitted curve and the least-squares regression line. The 
smoothed curve nearly overlaps the fitted line, suggesting a very linear asso-
ciation. In addition, the observations in the   y   direction are more equally dis-
persed above and below this fitted line than with the curve in  Figure 12.3 . 
Lastly, those four very large incomes no longer appear to be influential. Given 
these results, we continue our discussion of least-squares regression using the 
transformed   y   data. 

        Prediction of Loginc from Educ    The fitted line in  Figure 12.4  is the 
least-squares regression line for predicting   y   (log income) from   x   

(years of formal schooling). The equation of this line is 

   = +y xˆ 8.2546 0.1126    

 or 

   = + ×predicted Loginc 8.2546 0.1126 Educ   

 We can use the least-squares regression equation to find the predicted log 
income corresponding to a given education level. The difference between the 
observed value and the predicted value is the residual. For example, Entrepre-
neur 4 has 15 years of formal schooling and a log income of   =y 10.2274  . The 
predicted log income of this person is 

   = + =ŷ 8.2546 (0.1126)(15) 9.9436   

 ENTRE 

      influential 
observations,      p. 95   

      log transformation,   
   p. 70   

     FIGURE   12.4  Scatterplot, 
with smoothed curve (black) 
and regression line (red), of 
log average annual income 
versus years of education for a 
sample of 100 entrepreneurs. 
The smoothed curve is almost 
the same as the least-squares 
regression line.  
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574 Chapter 12 Inference for Regression

 so the residual is 

   − = − =y ŷ 10.2274 9.9436 0.2838 ■    

 Recall that the least-squares line is the line that minimizes the sum of the 
squares of the residuals. The least-squares regression line also always passes 
through the point (  ,x y  ). These are helpful facts to remember when consid-
ering the fit of this line to a data set. You can also use the  Correlation and 
Regression  applet, introduced in  Chapter 2 , to visually explore residuals and 
the properties of the least-squares line. 

        In  Section 2.2  ( page 74 ), we discussed the correlation as a measure of lin-
ear association between two quantitative variables. In  Section 2.3 , we learned 
to interpret the square of the correlation as the fraction of the variation in   y
that is explained by   x   in a simple linear regression. 

          Correlation between Loginc and Educ    For  Case 12.1 , the correlation 
between log income and education level is   =r 0.2394  . Because the 

squared correlation   =r 0.05732   , indicating that the change in Loginc along 
the regression line as Educ increases explains only 5.7% of the variation. The 
remaining 94.3% is due to other differences among these entrepreneurs. The 
entrepreneurs in this sample live in different parts of the United States; some 
are single and others are married, and some may have had a difficult upbring-
ing. All of these factors could be associated with income and, therefore, add to 
the variability if they are not included in the model. ■ 

          12.1 Predict Loginc.  In  Case 12.1 , Entrepreneur 12 has   =Educ 13
years and a log income of   =y 10.7649  . Using the least-squares regres-
sion equation in  Example 12.1 , find the predicted Loginc and the resid-
ual for this individual.   

   12.2 Draw the fitted line.  Suppose you fit 10 pairs of   ( , )x y    data using least 
squares. Draw the fitted line if   =x 5  ,   =y 4  , and the residual for the pair 
(3,4)   is 1.    

 Having reviewed the basics of least-squares regression, we are now ready to 
discuss inference for regression. To do this: 

 ●    We regard the 100 entrepreneurs for whom we have data as a simple ran-
dom sample from the population of all entrepreneurs in the United States.  

 ●   We use the regression line calculated from this sample as a basis for infer-
ence about the population. For example, for a given level of education, we 
want not just a prediction, but a prediction with a margin of error and a level 
of confidence for the log income of any entrepreneur in the United States.   

 Our statistical model assumes that the responses   y   are Normally distrib-
uted with a mean   µy   that depends upon   x   in a linear way. Specifically, the 
population regression line 

   µ β β= + xy 0 1    

 describes the relationship between the mean log income   µy   and the number 
of years of formal education   x   in the population. The slope   β1   is the average 
change in log income for each additional year of education. It turns out that 
a change in natural logs is a good approximation for the percent change [see 
 Example 14.11  ( page 698 ) for more details]. Thus, another way to view   β1   in 

     interpretation of     r2, 
   p. 88  

Correlation between Loginc and Educ   
between log income and education level is   

EXAMPLE 12.2
 CASE 
12.1 

          12.1 Predict Loginc.  In  Case 12.1 , Entrepreneur 12 has             12.1 Predict Loginc.  In  Case 12.1 , Entrepreneur 12 has             12.1 Predict Loginc. 
years and a log income of   10.7649

 APPLY YOUR KNOWLEDGE   CASE 12.1  
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57512.1 Inference about the Regression Model

this setting is as the average percent change in income for an additional year 
of education. The intercept β0 is the mean log income when an entrepreneur 
has x = 0 years of formal education. This parameter, by itself, is not interest-
ing in this example because zero years of education is very unusual. The value 

=x 0 is also well outside the data’s range.
Because the means yµ  lie on the line 0 1xyµ β β= + , they are all determined 

by β0 and β1. Thus, once we have estimates of β0 and β1, the linear relationship 
determines the estimates of yµ  for all values of x. Linear regression allows us 
to do inference not only for those subpopulations for which we have data, but 
also for those subpopulations corresponding to x’s not present in the data. 
These x-values can be both within and outside the range of observed x’s. Use 
extreme caution when predicting outside the range of the observed x’s, because 
there is no assurance that the same linear relationship between yµ  and x holds.

We cannot observe the population regression line because the observed 
responses y vary about their means. In Figure 12.4, we see the least-squares 
regression line that describes the overall pattern of the data, along with the 
scatter of individual points about this line. The statistical model for linear 
regression makes the same distinction, as shown in Figure 12.2 with the 
line and three Normal curves. The population regression line describes the 
on-the-average relationship, whereas the Normal curves describe the variabil-
ity in y for each value of x.

As we did in Chapter 9, we can think of this regression model as being of  
the form

= +DATA FIT RESIDUAL

The FIT part of the model consists of the subpopulation means, given by the 
expression xβ β+0 1 . The RESIDUAL part represents deviations of the data 
from the line of population means.

The model assumes that these deviations are Normally distributed with 
standard deviation σ. We use ε (the lowercase Greek letter epsilon) to stand 
for the RESIDUAL part of the statistical model. A response y is the sum of 
its mean and a chance deviation ε from the mean. The deviations ε represent 
“noise”—that is variations in y due to other causes that prevent the observed 
( , )x y -values from forming a perfectly straight line.

SIMPLE LINEAR REGRESSION MODEL

Given n observations of the explanatory variable x and the response vari-
able y,

x y x y x yn n( , ), ( , ), . . . , ( , )1 1 2 2

The statistical model for simple linear regression states that the 
observed response yi when the explanatory variable takes the value xi is

y xi i iβ β ε= + +0 1

Here, xy iµ β β= +0 1  is the mean response when =x xi. The deviations 
εi are independent and Normally distributed with mean 0 and standard 
deviation σ.

The parameters of the model are β0, β1, and σ.

Use of a simple linear regression model can be justified in a wide variety 
of circumstances. Sometimes, we observe the values of two variables, and we 
formulate a model with one of these as the response variable and the other as 
the explanatory variable. This is the setting for Case 12.1, where the response 
variable is log income (Loginc) and the explanatory variable is the number of 

extrapolation,  
p. 100

 DATA = FIT + 
RESIDUAL, p. 464
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576 Chapter 12 Inference for Regression

years of formal education (Educ). In other settings, the values of the explana-
tory variable are chosen by the persons designing the study. The scenario illus-
trated by  Figure 12.2  is an example. Here, the explanatory variable is training 
time, which is set at a few carefully selected values. The response variable is 
the number of entries per hour. 

      12.3 Understanding a linear regression model.  Consider a linear regression 
model for the number of financial entries per hour with   µ = + xy 56.82 2.4
and standard deviation   σ = 4.4  . The explanatory variable   x   is the number 
of hours of hands-on training.

    (a)   What is the slope of the population regression line?  

   (b)   Explain clearly what this slope says about the change in the mean of 
  y   for an additional hour of training.  

   (c)   What is the intercept of the population regression line?  

   (d)   Explain clearly what this intercept says about the mean number of 
entries per hour.     

   12.4 Understanding a linear regression model, continued.  Refer to the 
previous exercise.

    (a)   What is the subpopulation mean when   =x 3   hours?  

   (b)   What is the subpopulation distribution when   =x 3   hours?  

   (c)   Between what two values would approximately 95% of the observed 
responses   y   fall when   =x 3   hours?       

 For the simple linear regression model to be valid, one essential assump-
tion is that the relationship between the means of the response variable for 
the different values of the explanatory variable is approximately linear. This is 
the FIT part of the model. Another essential assumption concerns the RESID-
UAL part of the model. The assumption states that the deviations are an SRS 
from a Normal distribution with mean zero and standard deviation   σ  . If the 
data are collected through some sort of random sampling, the SRS assump-
tion is often easy to justify. This is the case in our two scenarios, in which both 
variables are observed in a random sample from a population or the response 
variable is measured at several predetermined values of the explanatory vari-
able that were randomly assigned to clerks. 

 In many other settings, particularly in business applications, we analyze 
all of the data available and there is no random sampling. Here, we often jus-
tify the use of inference for simple linear regression by viewing the data as 
coming from some sort of process. Here is one example. 

      Profits and Foot Traffic    Panera Bread wants to select the location for a new 
store. To help with this decision, company managers use information from all 
the current stores to determine the relationship between profits and foot traf-
fic outside the establishment. The regression model they use says that 

   β β ε= + × +Profits Foot Traffic0 1    

 The slope   β1   is, as usual, a rate of change: it is the expected increase in annual 
profits associated with each additional person walking by the store. The intercept 
  β0   is needed to describe the line but has no interpretive importance because no 
stores have zero foot traffic. Nevertheless, foot traffic does not completely deter-
mine profit. The   ε   term in the model accounts for differences among individual 

      12.3 Understanding a linear regression model. 
model for the number of financial entries per hour with   

 APPLY YOUR KNOWLEDGE 

  Profits and Foot Traffic    Panera Bread wants to select the location for a new 
store. To help with this decision, company managers use information from all 

EXAMPLE 12.3
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57712.1 Inference about the Regression Model

stores with the same foot traffic. A store’s proximity to other restaurants, for 
example, could be important but is not included in the FIT part of the model. In 
 Chapter 13 , we consider moving variables like this out of the RESIDUAL part of 
the model by allowing for more than one explanatory variable in the FIT part. ■ 

       12.5 U.S. versus overseas stock returns.  Returns on common stocks in 
the United States and overseas appear to be growing more closely cor-
related as various countries’ economies become more interdependent. 
Suppose that the following population regression line connects the total 
annual returns (in percent) on two indexes of stock prices:

   = − + ×Mean overseas return 0.3 0.12 U.S. Return   

    (a)   What is   β0   in this line? What does this number say about overseas 
returns when the U.S. market is flat (0% return)?  

   (b)   What is   β1   in this line? What does this number say about the rela-
tionship between U.S. and overseas returns?  

   (c)   We know that overseas returns will vary in years that have the same 
return on U.S. common stocks. Write the regression model based on the 
population regression line given in the problem statement. What part of this 
model allows overseas returns to vary when U.S. returns remain the same?    

   12.6 Fixed and variable costs.  In some mass-production settings, there is 
a linear relationship between the number   x   of units of a product in a 
production run and the total cost   y   of making these   x   units.

    (a)   Write a population regression model to describe this relationship.  

   (b)   The fixed cost is the component of total cost that does not change as 
  x   increases. Which parameter in your model is the fixed cost?  

   (c)   Which parameter in your model shows how total cost changes as 
more units are produced? Do you expect this number to be greater than 
0 or less than 0? Explain your answer.  

   (d)   Actual data from several production runs will not fall directly on a 
straight line. What term in your model allows variation among runs of 
the same size   x  ?        

    Estimating the regression parameters   
 The method of least squares presented in  Chapter 2  fits the least-squares line 
to summarize the relationship between the observed values of an explanatory 
variable and a response variable. Now we want to use this line as a basis for 
inference about a population from which our observations are a sample. In 
this setting, the slope   b1   and intercept   b0   of the least-squares line 

   = +y b b xˆ 0 1    

 estimate the slope   β1   and the intercept   β0   of the population regression line, 
respectively. 

  This inference should be done only when the statistical model for regres-
sion is reasonable.  Model checks are needed and some judgment is required. 
Because many of these checks rely on the residuals, let’s briefly review the 
methods introduced in  Chapter 2  for fitting the linear regression model to 
data and then discuss the model checks. 

 Using the formulas from  Chapter 2 , the slope of the least-squares line is 

   =b r
s

s
y

x
1    

       12.5 U.S. versus overseas stock returns. 
the United States and overseas appear to be growing more closely cor-

 APPLY YOUR KNOWLEDGE 
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578 Chapter 12  Inference for Regression

and the intercept is

= −b y b x0 1

Here, r is the correlation between the observed values of y and x, sy is the 
standard deviation of the sample of y’s, and sx is the standard deviation of the 
sample of x’s. Notice that if the estimated slope is 0, so is the correlation, and 
vice versa. We discuss this connection in more depth later in this section.

The remaining parameter to be estimated is σ, which measures the vari-
ation of y about the population regression line. More precisely, σ is the stan-
dard deviation of the Normal distribution of the deviations εi in the regression 
model. We don’t observe these εi, so how can we estimate σ?

Recall that the vertical deviations of the points in a scatterplot from the 
fitted regression line are the residuals. We use ei for the residual of the ith 
observation:

= −ei Observed Response Predicted Response

	 ˆy yi i= −
	 = − −y b b xi i0 1

The residuals ei are the observable quantities that correspond to the unobserv-
able model deviations εi. The ei sum to 0, and the εi come from a population 
with mean 0. Because we do not observe the εi, we use the residuals to esti-
mate σ and check the model assumptions of the εi.

To estimate σ, we work first with the variance and take the square root to 
obtain the standard deviation. For simple linear regression, the estimate of σ2 
is the average squared residual

	 ∑=
−

s
n

ei
1

2
2 2

∑=
−

−
n

y yi i
1

2
( ˆ )2

We average by dividing the sum by −n 2 so as to make s2 an unbiased estima-
tor of σ2. We subtract 2 from n because we’re using the data to also estimate β0 
and β1. In addition, it turns out that when any −n 2 residuals are known, we 
can find the other two residuals.

The quantity −n 2 is the degrees of freedom of s2. The estimate of the 
regression standard deviation σ is given by

=s s2

We call s the regression standard error.

ESTIMATING THE REGRESSION PARAMETERS

In the simple linear regression setting, we use the slope b1 and intercept b0 
of the least-squares regression line to estimate the slope β1 and intercept β0 
of the population regression line, respectively.

The standard deviation σ  in the model is estimated by the regression 
standard error

∑=
−

−s
n

y yi i
1

2
( ˆ )2

In practice, we use software to calculate b1, b0, and s from the (x,y) 
pairs of data. Here are the results for the income example of Case 12.1.

regression standard  
deviation σ

correlation, p. 75

residuals, p. 90
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57912.1 Inference about the Regression Model

      Reading Simple Regression Output     Figure 12.5   displays Excel out-
put for the regression of log income (Loginc) on years of education 

(Educ) for our sample of 100 entrepreneurs in the United States. In this out-
put, we find the correlation   =r 0.2394   and the squared correlation that we 
used in  Example 12.2 , along with the intercept and slope of the least-squares 
line. The regression standard error   s   is labeled simply “Standard Error.” 

Excel
A B C D E F G

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

SUMMARY OUTPUT

Multiple R
R Square
Adjusted R Square
Standard Error
Observations

ANOVA

Regression
Residual
Total

Intercept
Educ

8.254643317
0.112587853

0.622482517
0.046116142

13.26084
2.441398

1.35E-23
0.016424

7.019347022
0.021071869

9.489939612
0.204103836

1
98
99

7.404826509
121.7485605

129.153387

7.404827
1.242332

5.960424 0.016424076
df SS MS F Significance F

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

0.239444323
0.057333584
0.047714539
1.114599592

100

Regression Statistics

        The three parameter estimates are 

   = = =b b s8.254643317 0.112587853 1.1145995920 1    

 After rounding, the fitted regression line is 

   = +y xˆ 8.2546 0.1126    

 As usual, we ignore the parts of the output that we do not yet need. We will 
return to the output for additional information later. 

     FIGURE   12.5  Excel output for 
the regression of log average 
income on years of education, 
for  Example 12.4 .  

 CASE 
12.1 

  Reading Simple Regression Output   
put for the regression of log income (Loginc) on years of education 

 CASE 
12.1 

EXAMPLE 12.4

 ENTRE 

Minitab

Regression Analysis: Loginc versus EducRegression Analysis: Loginc versus Educ

Analysis of VarianceAnalysis of Variance

Model SummaryModel Summary

CoefficientsCoefficients

Regression EquationRegression Equation

SourceSource

SS

TermTerm

Constant
Educ
Constant
Educ

Loginc     =     8.255 + 0.1126 EducLoginc     =     8.255 + 0.1126 Educ

CoefCoef

8.255
0.1126
8.255

0.1126

SE CoefSE Coef

0.622
0.0461
0.622

0.0461

T-ValueT-Value

13.26
2.44

13.26
2.44

P-ValueP-Value

0.000
0.016
0.000
0.016

VIFVIF

1.001.00

1.114601.11460

R-sqR-sq

5.73%5.73%

R-sq(adj)R-sq(adj)

4.77%4.77%

R-sq(pred)R-sq(pred)

1.83%1.83%

Regression
Error
Total

Regression
Error
Total

DFDF

1
98
99

1
98
99

Adj SSAdj SS

7.405
121.749
129.153

7.405
121.749
129.153

Adj MSAdj MS

7.405
1.242
7.405
1.242

F-ValueF-Value

5.965.96

P-ValueP-Value

0.0160.016

Bivariate Fit of Loginc by Educ

Linear Fit
Loginc = 8.2546433 + 0.1125879*Educ

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

Sum of
Squares
7.40483

121.74856
129.15339

Source
Model
Error
C. Total

Term
Intercept

Educ

Estimate

8.2546433

0.1125879

Std Error

0.622483

0.046116

t Ratio

13.26

2.44

Prob> |t|

<.0001*

0.0164*

DF
1

98
99

Mean Square
7.40483
1.24233

F Ratio
5.9604 
Prob > F
0.0164*

0.057334

0.047715

1.1146

9.74981

100

Summary of Fit

Analysis of Variance

Parameter Estimates

Lack of Fit

     FIGURE   12.6  JMP, Minitab, and R outputs for the regression of log average income on years of education. 
The data are the same as in  Figure 12.5 .  
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580 Chapter 12 Inference for Regression

Call:
lm(formula = Loginc ~ Educ)

Residuals:
     Min        1Q    Median        3Q       Max 
-2.66319  -0.74044  -0.01399   0.67042   2.43083

Coefficients:

(Intercept)
Educ

Estimate
8.25464
0.11259

Std. Error
0.62248
0.04612

t value
13.261
2.441

Pr(>|t|)
<2e-16 ***
0.0164 *

---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.115 on 98 degrees of freedom

Multiple R-squared:  0.05733, Adjusted R-squared:  0.04771

F-statistic:  5.96 on 1 and 98 DF,  p-value: 0.01642

  Figure 12.6   shows the regression output from three other software pack-
ages. Although the formats differ, you should be able to find the results you 
need. Once you know what to look for, you can understand statistical output 
from almost any software. ■ 

          12.7 Research and development spending.  The National Science Founda-
tion collects data on research and development spending by universities 
and colleges in the United States. 3  Here are the data for the years 2012–
2015: NSF

 Year  2012  2013  2014  2015 

 Spending (billions of dollars)  65.9  67.1  67.3  68.7 

    (a)   Create a scatterplot that shows the increase in research and develop-
ment spending over time. Does the pattern suggest that the spending is 
increasing linearly over time? Explain your answer.  

   (b)   Find the equation of the least-squares regression line for predicting 
spending from year. Add this line to your scatterplot.  

   (c)   For each of the four years, find the residual. Use these residuals to 
calculate the regression standard error   s  . (Do these calculations with a 
calculator or spreadsheet.)  

   (d)   Write the regression model for this setting. What are your estimates 
of the unknown parameters in this model?  

   (e)  Use your least-squares equation to predict research and develop-
ment spending for the year 2016. The actual spending for that year was 
$72.0 billion. Add this point to your plot and comment on how well the 
model predicted the actual outcome.

  ( Comment:  These are  time series data.  Simple regression is often a good 
fit to time series data over a limited span of time. See  Chapter 14  for 
methods designed specifically for use with time series.)        

          12.7 Research and development spending. 
tion collects data on research and development spending by universities 

 APPLY YOUR KNOWLEDGE 

     FIGURE   12.6  Continued  

13_psbe5e_10900_ch12_569_616.indd   580 15/07/19   10:41 AM
Copyright ©2020 W.H. Freeman Publishers. Distributed by W.H. Freeman Publishers. Not for redistribution. 



58112.1 Inference about the Regression Model

Conditions for regression inference
You can fit a least-squares line to any set of explanatory-response data when 
both variables are quantitative. The simple linear regression model, which 
is the basis for inference, imposes several conditions on this fit. We should 
always verify these conditions before proceeding to inference. There is no point 
in trying to do statistical inference if we cannot trust the results.

The conditions concern the population, but we can observe only our sam-
ple. Thus, in doing inference, we act as if the sample is an SRS from the 
population. For the study described in Case 12.1, the researchers used a 
national survey. Participants were chosen to be a representative sample of the 
United States, so we can treat this sample as an SRS. The potential for bias 
should always be considered, especially when the sample includes volunteers.

The next condition is that there is a linear relationship in the popula-
tion, described by the population regression line. We can’t observe the pop-
ulation line, so we check this condition by asking if the sample data show a 
roughly linear pattern in a scatterplot. We also check for any outliers or influ-
ential observations that could affect the least-squares fit.

The model also says that the standard deviation of the responses about 
the population line is the same for all values of the explanatory variable. 
In practice, this means the spread in the observations above and below the 
least-squares line should be roughly the same as x varies.

Plotting the residuals against the explanatory variable or against the pre-
dicted values is a helpful and frequently used visual aid to check both of 
these conditions. This technique is often better than creating a scatterplot 
because a residual plot magnifies any patterns that exist. The residual plot in 
Figure 12.7 for the data of Case 12.1 looks satisfactory. There is no obvious 
pattern in the residuals versus x, no data points seem out of the ordinary, and 
the residuals appear equally dispersed throughout the range of the explana-
tory variable.

The final condition is that the response varies Normally about the pop-
ulation regression line. If that is the case, we expect the residuals ei to also 
be Normally distributed.4 A Normal quantile plot or histogram of the residu-
als is commonly used to check this condition. For the data of Case 12.1, a Nor-
mal quantile plot of the residuals (Figure 12.8) shows no serious deviations 

outliers and 
influential 

observations, p. 95

residual plots,  
p. 91

Normal quantile 
plot, p. 53

FIGURE 12.8  Normal quantile plot of the regression 
residuals for the average annual income data.
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FIGURE 12.7  Plot of the regression residuals against the 
explanatory variable for the annual income data.
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582 Chapter 12  Inference for Regression

Confidence intervals and significance tests
Chapter 8 presented confidence intervals and significance tests for means and 
differences in means. In each case, inference rested on the standard errors of 
estimates and on t distributions. Inference for the slope and intercept in linear 
regression is similar in principle. For example, the t*confidence intervals have 
the form

± testimate SE*
estimate

where t* is a critical value of a t distribution. It is the formulas for the estimate 
and standard error that are different.

Confidence intervals and tests for the slope and intercept are based on the 
sampling distributions of the estimates b1 and b0. Here are some important 
facts about these sampling distributions when the simple linear regression 
model is true:

●● Both b1 and b0 have Normal distributions.

●● The mean of b1 is β1 and the mean of b0 is β0. That is, the slope and intercept 
of the fitted line are unbiased estimators of the slope and intercept of the 
population regression line.

●● The standard deviations of b1 and b0 are multiples of the regression stan-
dard deviation σ. (We give details later.)

Normality of b1 and b0 is a consequence of Normality of the individual devi-
ations εi in the regression model. If the εi are not Normal, a general form of 
the central limit theorem tells us that the distributions of b1 and b0 will be 
approximately Normal when we have a large sample. On the one hand, this 

unbiased estimator, 
p. 300

central limit 
theorem, p. 313

LINEAR REGRESSION MODEL CONDITIONS

To use the least-squares line as a basis for inference about a population, 
each of the following conditions should be approximately met:

•	The sample is an SRS from the population.

•	There a linear relationship between x and y.

•	The standard deviation of the responses y about the population regres-
sion line is the same for all x.

•	The model deviations are Normally distributed.

from a Normal distribution. The data give us no reason to doubt the simple 
linear regression model, so we proceed to inference.

Notice that Normality of the distributions of the response and explana-
tory variables is not required. The Normality condition applies to the dis-
tribution of the model deviations, which we assess using the residuals. For 
the entrepreneur problem, we transformed y to get a more linear relation-
ship and residuals that are more Normal with constant variance. The fact 
that the distribution of the transformed y approaches Normality is purely a 
coincidence.

While not the case here, sometimes x is not a fixed known quantity but 
rather is measured with error. Even if all the conditions for linear regression 
are satisfied, this regression model is not appropriate if the error in measuring x 
is large relative to the spread of the x’s. If this is a concern, seek expert advice, 
as more advanced inference methods are needed.
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58312.1 Inference about the Regression Model

means regression inference is robust against moderate lack of Normal-
ity. On the other hand, outliers and influential observations can invalidate the 
results of inference for regression.

Because b1 and b0 have Normal sampling distributions, standardizing these 
estimates gives standard Normal z statistics. The standard deviations of these 
estimates are multiples of σ. Because we do not know σ, we estimate it by s, 
the regression standard error. When we do this, we get t distributions with 
degrees of freedom −n 2, the degrees of freedom of s. We give formulas for 
the standard errors bSE

1
 and bSE

0
 in Section 12.3. For now, we concentrate on 

the basic ideas and let software do the calculations.

INFERENCE FOR THE REGRESSION SLOPE

A level C confidence interval for the slope β1 of the population regres-
sion line is

±b t bSE1
*

1

In this expression, t* is the value for the −t n( 2) density curve with area C 
between −t* and t*. The margin of error is =m t bSE*

1
.

To test the hypothesis β β= ∗H :0 1 1, compute the t statistic

β
=

− ∗
t

b

bSE
1 1

1

Most software provides the test of the hypothesis β =H : 00 1 . In that case, 
the t statistic reduces to

=t
b

bSE
1

1

The degrees of freedom are −n 2. In terms of a random variable T  hav-
ing the −t n( 2) distribution, the P-value for a test of H0 against

	 β β> ≥∗H P T ta: is ( )1 1

	 β β< ≤∗H P T ta: is ( )1 1

β β≠ ≥∗H P T ta: is 2 ( | |)1 1

Formulas for confidence intervals and significance tests for the intercept 
β0 are exactly the same, replacing b1 and bSE

1
 by b0 and its standard error bSE ,

0
 

respectively. Although computer outputs may include a test of β =H : 0,0 0  this 
information often has little practical value. From the equation for the popu-
lation regression line, µ β β= + xy 0 1 , we see that β0 is the mean response cor-
responding to =x 0. In many situations, this subpopulation does not exist or 
is not interesting. That is the case for Case 12.1, but Exercises 12.5 and 12.6 
(page 577) are two settings where this information is meaningful.

The test of β =H : 00 1  is always quite useful. When we substitute β = 01  in 
the model, the x term drops out and we are left with

µ βy = 0

t

t

|t|
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584 Chapter 12 Inference for Regression

 This model says that the mean of   y   does not vary with   x  . In other words, all the 
  y  ’s come from a single population with mean   β0  , which we would estimate by   y   
and then perform inference using the methods of  Section 8.1 . The hypothesis 
  H :0      β = 01   , therefore, says that there is no straight-line relationship between   y   
and   x   and that linear regression of   y   on   x   is of no value for predicting   y  . 

      Does Loginc Increase with Educ?    The Excel regression output in  
Figure 12.5  ( page 579 ) for the entrepreneur problem contains the 

information needed for inference about the regression coefficients. You can 
see that the slope of the least-squares line is   =b 0.11261    and the standard 
error of this statistic is   =bSE 0.0461

1
  . 

 Given that the response   y   is on the log scale, this slope also approximates 
the percent change in the original variable for a unit change in   x  . In this 
case, one extra year of education is associated with an increase in income of 
approximately 11.3%. 

 A 95% confidence interval for the slope   β1   of the regression line in the pop-
ulation of all entrepreneurs in the United States is 

   ± = ±b t bSE 0.1126 (1.984)(0.0461)1
*

1
   

   = ±0.1126 0.0915   

   = 0.0211 to 0.2041   

 This interval contains only positive values, suggesting an increase in Loginc 
for an additional year of schooling. In terms of percent change, we are 95% 
confident that the average increase in income for one additional year of edu-
cation is between 2.1% and 20.4%. 

 The   t   statistic and   P   -value for the test of   β =H : 00 1    against the two-sided 
alternative   β ≠Ha: 01    appear in the columns labeled “  t     Stat  ” and “  P   -  value  .” 
The   t   statistic for the significance of the regression is 

   = = =t
b

bSE
0.1126
0.0461

2.441

1

   

 and the   P   -value for the two-sided alternative is 0.0164. If we expected before-
hand that income rises with education, our alternative hypothesis would be 
one-sided,   β >Ha: 01   . The   P   -value for this   Ha   is one-half the two-sided value 
given by Excel; that is,   =P 0.0082  . In both cases, there is strong evidence that 
the mean log income level increases as education increases. 

     The   t   distribution for this problem has   − =n 2 98   degrees of freedom. 
 Table D  has no row for 98 degrees of freedom. In Excel, the critical value 
and   P   -value can be obtained by using the functions   = T.INV(0.975, 98)   and 
  ( )= T.DIST.2T 2.44, 98 ,   respectively. If you do not have access to software, we 
suggest taking a conservative approach and using the next  lower  degrees 
of freedom in  Table D  (80 degrees of freedom). This makes our interval a 
bit wider than we actually need for 95% confidence and the   P   -value a bit 
larger. ■ 

      In this example, we can discuss percent change in income for a unit change 
in education because the response variable   y   is on the log scale and   x   is not. In 
business and economics, we often encounter models in which both variables 
are on the log scale. In these cases, the slope approximates the percent change 
in   y   for a 1% change in   x  . This relationship is known as    elasticity    ,  a very 
important concept in economic theory. 

 ENTRE 

  Does Loginc Increase with Educ?   
Figure 12.5  ( page 579 ) for the entrepreneur problem contains the 

EXAMPLE 12.5

     conservative,   p. 421   

    elasticity      

 Case 
12.1 
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58512.1 Inference about the Regression Model

   Treasury bills and inflation.  When inflation is high, lenders require higher 
interest rates to make up for the loss of purchasing power of their money while it 
is loaned out.  Table 12.1  displays the return for six-month Treasury bills (annu-
alized) and the rate of inflation as measured by the change in the government’s 
Consumer Price Index in the same year.   5    An inflation rate of 5% means that the 
same set of goods and services costs 5% more. The data cover 60 years, from 
1958 to 2017.  Figure 12.9   is a scatterplot of these data.  Figure 12.10   shows Excel 
regression output for predicting T-bill return from inflation rate.  Exercises 12.8  
through  12.10  ask you to use this information.   INFLAT

       12.8 Look at the data.  Give a brief description of the form, direction, and 
strength of the relationship between the inflation rate and the return on 
Treasury bills. What is the equation of the least-squares regression line 
for predicting T-bill return?  

   12.9 Is there a relationship?  What are the slope   b1   of the fitted line and 
its standard error? Use these numbers to test by hand the hypothesis 
that there is no straight-line relationship between inflation rate and 
T-bill return against the alternative that the return on T-bills increases 
as the rate of inflation increases. State the hypotheses, give both the   t
statistic and its degrees of freedom, and use  Table D  to approximate the 
P   -value. Then compare your results with those given by Excel. (Excel’s 
P   -value rounded to 2.40E-10 is shorthand for 0.00000000024. We would 
report this as “  < 0.0001  .”)  

   Treasury bills and inflation.  When inflation is high, lenders require higher 
interest rates to make up for the loss of purchasing power of their money while it 

 APPLY YOUR KNOWLEDGE 

   TABLE   12.1  Return on Treasury bills and rate of inflation  

 Year 
 T-bill 

percent 
 Inflation 
percent  Year 

 T-bill 
percent 

 Inflation 
percent  Year 

 T-bill 
percent 

 Inflation 
percent 

 1958  3.01  1.76  1978  7.58  9.02  1998  4.83  1.61 

 1959  3.81  1.73  1979  10.04  13.20  1999  4.75  2.68 

 1960  3.20  1.36  1980  11.32  12.50  2000  5.90  3.39 

 1961  2.59  0.67  1981  13.81  8.92  2001  3.34  1.55 

 1962  2.90  1.33  1982  11.06  3.83  2002  1.68  2.38 

 1963  3.26  1.64  1983  8.74  3.79  2003  1.05  1.88 

 1964  3.68  0.97  1984  9.78  3.95  2004  1.58  3.26 

 1965  4.05  1.92  1985  7.65  3.80  2005  3.39  3.42 

 1966  5.06  3.46  1986  6.02  1.10  2006  4.81  2.54 

 1967  4.61  3.04  1987  6.03  4.43  2007  4.44  4.08 

 1968  5.47  4.72  1988  6.91  4.42  2008  1.62  0.09 

 1969  6.86  6.20  1989  8.03  4.65  2009  0.28  2.73 

 1970  6.51  5.57  1990  7.46  6.11  2010  0.20  1.50 

 1971  4.52  3.27  1991  5.44  3.06  2011  0.10  2.96 

 1972  4.47  3.41  1992  3.54  2.90  2012  0.13  1.74 

 1973  7.20  8.71  1993  3.12  2.75  2013  0.09  1.50 

 1974  7.95  12.34  1994  4.64  2.67  2014  0.06  0.76 

 1975  6.10  6.94  1995  5.56  2.54  2015  0.16  0.73 

 1976  5.26  4.86  1996  5.08  3.32  2016  0.46  2.07 

 1977  5.52  6.70  1997  5.18  1.70  2017  1.05  2.11 
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586 Chapter 12 Inference for Regression

   12.10 Estimating the slope.  Using Excel’s values for   b1   and its standard 
error, find a 95% confidence interval for the slope   β1   of the population 
regression line. Compare your result with Excel’s 95% confidence inter-
val. What does the confidence interval tell you about the change in the 
T-bill return rate for a 1% increase in the inflation rate?     

    The word “regression”   
 To “regress” means to go backward. Why are statistical methods for predict-
ing a response from an explanatory variable called “regression”? Sir Francis 
Galton (1822–1911) was the first to apply regression to biological and psycho-
logical data. He looked at examples such as the heights of children versus the 
heights of their parents. He found that the taller-than-average parents tended 
to have children who were also taller than average, but not as tall as their 
parents. Galton called this fact “regression toward mediocrity,” and the name 

     FIGURE   12.9  Scatterplot of 
the percent return on Treasury 
bills against the rate of inflation 
the same year, for  Exercises 
12.8  to  12.10 .  
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     FIGURE   12.10  Excel output 
for the regression of the percent 
return on Treasury bills against 
the rate of inflation the same 
year, for  Exercises 12.8  to  12.10 .  

Excel
A B C D E F G

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

SUMMARY OUTPUT

Multiple R
R Square
Adjusted R Square
Standard Error
Observations

ANOVA

Regression
Residual
Total

Intercept
Inflation

1.915760071
0.755909083

0.462265395
0.098852317

4.144286
7.646852

0.0001123
2.398E-10

0.990435347
0.558034672

2.841084796
0.953783494

1
58
59

279.3379779
277.0719468
556.4099248

279.338
4.777103

58.474353 2.39776E-10
df SS MS F Significance F

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

0.708545197
0.502036296
0.493450715
2.185658375

60

Regression Statistics
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58712.1 Inference about the Regression Model

  

came to be applied to the statistical method. Galton also invented the correla-
tion coefficient   r   and named it “correlation.” 

 Why are the children of tall parents shorter on the average than their par-
ents? The parents are tall in part because of their genes. But they are also 
tall in part by chance. Looking at tall parents selects those in whom chance 
produced height. Their children inherit their genes, but not necessarily their 
good luck. As a group, the children are taller than average (genes), but their 
heights vary by chance about the average, some upward and some downward. 
The children, unlike the parents, were not selected because they were tall and 
thus, on average, are shorter. A similar argument can be used to describe why 
children of short parents tend to be taller than their parents. 

 Here’s another example. Students who score at the top on the first exam in 
a course are likely to do less well on the second exam. Does this show that they 
stopped studying? No—they scored high in part because they knew the material 
but also in part because they were lucky. On the second exam, they may still 
know the material but be less lucky. As a group, they will still do better than 
average but not as well as they did on the first exam. The students at the bottom 
on the first exam will tend to move up on the second exam, for the same reason. 

 The    regression fallacy    is the assertion that  regression toward the mean
shows that there is some systematic effect at work: students with top scores 
now work less hard, or managers of last year’s best-performing mutual funds 
lose their touch this year, or heights get less variable with each passing gen-
eration as tall parents have shorter children and short parents have taller 
children. The Nobel economist Milton Friedman says, “I suspect that the 
regression fallacy is the most common fallacy in the statistical analysis of eco-
nomic data.” 6  Beware. 

       12.11 Hot funds?  Explain carefully to a naive investor why the mutual funds 
that had the highest returns this year will, as a group, probably do less 
well relative to other funds next year.  

   12.12 Mediocrity triumphant?  In the early 1930s, a man named Horace 
Secrist wrote a book titled  The Triumph of Mediocrity in Business . 
Secrist found that businesses that did unusually well or unusually 
poorly in one year tended to be nearer the average in profitability at a 
later year. Why is it a fallacy to say that this fact demonstrates an over-
all movement toward “mediocrity”?     

    Inference about correlation   
 The correlation between log income and level of education for the 100 entre-
preneurs is   =r 0.2394  . This value appears in the Excel output in  Figure 12.5  
( page 579 ), where it is labeled “Multiple R.” 7  We might expect a positive cor-
relation between these two measures in the population of all entrepreneurs in 
the United States. Is the sample result convincing evidence that this is true? 

 This question concerns a new population parameter, the    population 
 correlation    .  This is the correlation between the log income and level of edu-
cation when we measure these variables for every member of the population. 
We call the population correlation   ρ  , the Greek letter rho. To assess the evi-
dence that   ρ > 0   in the population, we must test the hypotheses 

   ρ =H : 00    

   ρ >Ha: 0   

 It is natural to base the test on the sample correlation   =r 0.2394  . Indeed, 
most computer packages with routines to calculate sample correlations 

    regression fallacy      

       12.11 Hot funds?  Explain carefully to a 
that had the highest returns this year will, as a group, probably do less 

 APPLY YOUR KNOWLEDGE 

    population correlation   ρ

13_psbe5e_10900_ch12_569_616.indd   587 15/07/19   10:41 AM
Copyright ©2020 W.H. Freeman Publishers. Distributed by W.H. Freeman Publishers. Not for redistribution. 



588 Chapter 12 Inference for Regression

provide the result of this significance test. We can also use regression software 
by exploiting the close link between correlation and the regression slope. The 
population correlation   ρ   is zero, positive, or negative exactly when the slope   β1
of the population regression line is zero, positive, or negative, respectively. In 
fact, the   t   statistic for testing   β =H : 00 1    also tests   ρ =H : 00   . What is more, this 
  t   statistic can be written in terms of the sample correlation   r  .   

   TEST FOR ZERO POPULATION CORRELATION  

To test the hypothesis   ρ =H : 0,0    either use the   t   statistic for the regression 
slope or compute this statistic from the sample correlation   r  :

   =
−

−
t

r n

r

2

1 2
   

 This   t   statistic has   −n 2   degrees of freedom.  

      Correlation between Loginc and Educ    The sample correlation 
between Loginc and Educ is   =r 0.2394   for a sample of size   =n 100  . 

  Figure 12.11   contains Minitab output for this correlation calculation. Minitab 
calls this a Pearson correlation to distinguish it from other kinds of correla-
tions it can calculate. The   P   -value for a two-sided test of   ρ =H : 00    is 0.016 and 
the   P   -value for our one-sided alternative is 0.008. 

           We can also get this result from the Excel output in  Figure 12.5  ( page 579 ). 
In the “Educ” line, notice that   =t 2.441   with two-sided   P   -value 0.0164. Thus, 
  =P 0.00082   for our one-sided alternative. 

Finally, we can calculate   t   directly from   r   as follows:

   =
−

−
t

r n

r

2

1 2
         

   =
−

−

0.2394 100 2

1 (0.2394)2
         

   = =
2.3699
0.9709

2.441   

 If we are not using software, we can compare   =t 2.441   with critical values 
from the   t   table ( Table D ) with 80 (largest row less than or equal to   − =n 2 98  ) 
degrees of freedom. ■ 

 The alternative formula for the test statistic is convenient because it uses 
only the sample correlation   r   and the sample size   n  . Remember that correlation, 
unlike regression, does not require a distinction between the explanatory and 
response variables. For variables   x   and   y  , there are two regressions (  y   on   x   and 
  x   on   y  ) but just one correlation. Both regressions produce the same   t   statistic. 

      Correlation between Loginc and Educ  
between Loginc and Educ is   

EXAMPLE 12.6
 CASE 
12.1 

     FIGURE   12.11  Minitab output 
for the correlation between log 
average income and years of 
education, for  Example 12.6 .  

Minitab

Correlation:    Loginc,   EducCorrelation:    Loginc,   Educ
Pearson correlation     0.239Pearson correlation     0.239
P-value                           0.016P-value                           0.016

 ENTRE 
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58912.1 Inference about the Regression Model

 The distinction between the regression setting and correlation is important 
only for understanding the conditions under which the test for zero popula-
tion correlation makes sense. In the regression model, we take the values of 
the explanatory variable   x   as given. The values of the response   y   are Normal 
random variables, with means that are a straight-line function of   x  . In the 
model for testing correlation, we think of the setting where we obtain a ran-
dom sample from a population and measure both   x   and   y  . Both are assumed 
to be Normal random variables. In fact, they are taken to be    jointly Normal    .  
This implies that the conditional distribution of   y   for each possible value of   x   
is Normal, just as in the regression model. 

       12.13 T-bills and inflation.  We expect the interest rates on Treasury bills to 
rise when the rate of inflation rises and to fall when inflation falls. That 
is, we expect a positive correlation between the return on T-bills and the 
inflation rate.

    (a)   Find the sample correlation   r   for the 60 years in  Table 12.1  in the 
Excel output in  Figure 12.10 (page 586) .  

   (b)   From   r  , calculate the   t   statistic for testing correlation. What are its 
degrees of freedom? Use  Table D  to give an approximate   P   -value. Com-
pare your result with the   P   -value from part (a).  

   (c)   Verify that your   t   for correlation calculated in part (b) has the same 
value as the   t   for slope in the Excel output.     

   12.14 Two regressions.  We have regressed Loginc on Educ, with 
the results appearing in  Figures 12.5  and  12.6 . Use software to regress 
Educ on Loginc for the same data. ENTRE

     (a)   What is the equation of the least-squares line for predicting years of 
education from log income? Is it a different line than the regression line 
in  Figure 12.4 ? To answer this question, plot two points for each equa-
tion and draw a line connecting them.  

   (b)   Verify that the two lines cross at the mean values of the two vari-
ables. That is, substitute the mean Educ into the line in  Figure 12.5 , and 
show that the predicted log income equals the mean of Loginc of the 
100 subjects. Then substitute the mean Loginc into your new line, and 
show that the predicted years of education equals the mean Educ for 
the entrepreneurs.  

   (c)   Verify that the two regressions give the same value of the   t   statistic 
for testing the hypothesis of zero population slope. You could use either 
regression to test the hypothesis of zero population correlation.        

    SECTION   12.1  SUMMARY  
 ● Least-squares regression  fits a straight line to data to predict a 

quantitative response variable   y   from a quantitative explanatory variable   x  . 
Inference about regression requires additional conditions.  

 ●   The  simple linear regression model  says that a  population regression 
line    µ β β= + xy 0 1    describes how the mean response in an entire population 
varies as   x   changes. The observed response   y   for any   x   has a Normal 
distribution with a mean given by the population regression line and with 
the same standard deviation   σ   for any value of   x  .  

 ●   The  parameters  of the simple linear regression model are the intercept 
  β0  , the slope   β1  , and the regression standard deviation   σ  . The  slope    b1   and 

    jointly Normal      

       12.13 T-bills and inflation.  We expect the interest rates on Treasury bills to 
rise when the rate of inflation rises and to fall when inflation falls. That 

 APPLY YOUR KNOWLEDGE 

  CASE 12.1  
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590 Chapter 12  Inference for Regression

intercept b0 of the least-squares line estimate the slope β1 and intercept β0 of 
the population regression line, respectively.

●● The parameter σ is estimated by the regression standard error

∑=
−

−s
n

y yi i
1

2
( ˆ )2

where the differences between the observed and predicted responses are the 
residuals

= −e y yi i iˆ

●● Prior to inference, always examine the residuals for Normality, constant 
variance, and any other remaining patterns in the data. Plots of the 
residuals are commonly used as part of this examination.

●● The regression standard error s has −n 2 degrees of freedom. Inference 
about β0 and β1 uses t distributions with −n 2 degrees of freedom.

●● Confidence intervals for the slope of the population regression line have 
the form b1 ± t bSE*

1
. In practice, you will use software to find the slope b1 of 

the least-squares line and its standard error bSE
1
.

●● To test the hypothesis that the population slope is zero, use the t statistic 
=t b b/ SE1 1

, also given by software. This null hypothesis says that straight-
line dependence on x has no value for predicting y.

●● The t test for zero population slope also tests the null hypothesis that the 
population correlation is zero. This t statistic can be expressed in terms of 
the sample correlation, = − −t r n r2 / 1 2 .

SECTION 12.1  EXERCISES
For Exercises 12.1 and 12.2, see page 574; for 12.3 and 
12.4, see page 576; for 12.5 and 12.6, see page 577; for 12.7,  
see page 580; for 12.8 to 12.10, see pages 585–586; for 
12.11 and 12.12, see page 587; and for 12.13 and 12.14, see  
page 589.

12.15 Assessment value versus sales price. Real estate 
is typically assessed annually for property tax purposes. 
This assessed value, however, is not necessarily the same 
as the fair market value of the property. Table 12.2 lists 
the sales price and assessed value for an SRS of 35 
properties recently sold in a midwestern county.8 Both 
variables are measured in thousands of dollars. 

HSALES

(a)  What proportion have a selling price greater than the 
assessed value? Do you think this proportion is a good 
estimate for the larger population of all homes recently 
sold? Explain your answer.

(b)  Make a scatterplot with assessed value on the 
horizontal axis. Briefly describe the relationship between 
assessed value and selling price.

(c)  Based on the scatterplot, there are two properties 
with very large assessed values. Do you think it is more 
appropriate to consider all 35 properties for linear 
regression analysis or to just consider the 33 properties? 
Explain your decision.

(d)  Report the least-squares regression line for 
predicting selling price from assessed value using all 35 
properties. What is the regression standard error?

(e)  Now remove the two properties with the 
highest assessments and refit the model. Report the 
least-squares regression line and regression standard 
error.

(f)  Compare the two sets of results. Describe how these 
large x values impact the results.

12.16 Assessment value versus sales price,  
continued. Refer to the previous exercise. Let’s consider 
linear regression analysis using all 35 properties. 

HSALES

(a)  Obtain the residuals and plot them versus assessed 
value. Is there anything unusual to report? Describe the 
reasoning behind your answer.

(b)  Do the residuals appear to be approximately 
Normal? Describe how you assessed this.

(c)  Do you think all the conditions for inference are 
approximately met? Explain your answer.

(d)  Construct a 95% confidence interval for the intercept 
and slope, and summarize the results.
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59112.1 Inference about the Regression Model

12.17 Are the assessment value and sales price 
different? Refer to the previous two exercises.

HSALES

(a)  Again create the scatterplot with assessed value on 
the horizontal axis. If, on average, sales price and the 
assessed value are the same, the population regression 
line should be =y x. Draw this line on your scatterplot 
and compare it to the least squares line.

(b)  Explain why we cannot simply test β =H : 10 1  versus 
the two-sided alternative to assess if the least-squares 
line is different from =y x.

(c)  Use methods from Chapter 8 to test the hypothesis 
that, on average, the sales price equals the assessed value.

12.18 Are female CEOs older? A pair of researchers 
looked at the age and sex of large sample of CEOs.9 To 
investigate the relationship between these two variables, 
they fit a regression model with age as the response 
variable and sex as the explanatory variable. The 

explanatory variable was coded =x 0 for males and =x 1 
for females. The resulting least-squares regression line was

ˆ 55.643 2.205y x= −

(a)  What is the expected age for a male CEO ( =x 0)?

(b)  What is the expected age for a female CEO ( =x 1)?

(c)  What is the difference in the expected age of female 
and male CEOs?

(d)  Relate your answers to parts (a) and (c) to the least-
squares estimates b0 and b1.

(e)  The t statistic for testing β =H : 00 1  was reported as 
−6.474. Based on this result, what can you conclude 
about the average ages of female and male CEOs?

(f)  To compare the average age of male and female 
CEOs, the researchers could have instead performed 
a two-sample t test (Chapter 8). Will this regression 
approach provide the same result? Explain your answer.

TABLE 12.2	 Sales price and assessed value (in thousands of $) of 35 homes in a midwestern county

Property
Sales 
price

Assessed 
value Property

Sales 
price

Assessed 
value Property

Sales 
price

Assessed 
value

1 116.9 94.9 13 200.0 205.6 25 200.0 200.6

2 161.0 160.0 14 146.6 152.9 26 162.5 92.3

3 202.0 233.3 15 215.0 167.4 27 256.8 251.0

4 300.0 255.1 16 125.0 139.3 28 286.0 184.3

5 137.5 123.9 17 139.9 128.2 29 90.0 102.0

6 178.0 157.4 18 238.0 198.2 30 284.3 272.4

7 350.0 395.5 19 120.9 93.4 31 229.9 217.0

8 150.9 126.8 20 142.5 92.3 32 235.0 199.7

9 122.5 109.7 21 282.2 257.6 33 419.0 335.8

10 270.5 241.9 22 279.0 243.5 34 149.0 209.8

11 267.5 254.4 23 110.0 109.2 35 255.4 258.1

12 174.9 135.0 24 130.0 125.1

TABLE 12.3	 In-state tuition and fees (in dollars) for 33 public universities

School 2013 2017 School 2013 2017 School 2013 2017

Penn State 16,992 18,436 Ohio State 10,037 10,591 Texas 9790 10,136

Pittsburgh 17,100 19,080 Virginia 12,458 16,781 Nebraska 8075 8901

Michigan 13,142 14,826 California–Davis 13,902 14,382 Iowa 8061 8964

Rutgers 13,499 14,638 California–Berkeley 12,864 13,928 Colorado 10,529 12,086

Michigan State 12,908 14,460 California–Irvine 13,149 15,516 Iowa State 7726 8636

Maryland 9161 10,399 Purdue 9992 9992 North Carolina 8340 9005

Illinois 14,750 15,868 California–San Diego 13,302 14,028 Kansas 10,107 10,824

Minnesota 13,618 14,417 Oregon 9763 11,571 Arizona 10,391 11,877

Missouri 10,104 9787 Wisconsin 10,403 10,533 Florida 6263 6381

Buffalo 7022 7976 Washington 12,397 10,974 Georgia Tech 10,650 12,418

Indiana 10,209 10,533 UCLA 12,696 13,749 Texas A&M 8506 10,403
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592 Chapter 12  Inference for Regression

12.19 Public university tuition: 2013 versus 2017. 
Table 12.3 shows the in-state undergraduate tuition in 
2013 and 2017 for 33 public universities.10 TUIT

(a)  Plot the data with the 2013 tuition on the x axis 
and describe the relationship. Are there any outliers or 
unusual values? Does a linear relationship between the 
tuition in 2013 and 2017 seem reasonable?

(b)  Fit the simple linear regression model and give the 
least-squares regression line and regression standard 
error.

(c)  Obtain the residuals and plot them versus the 2013 
tuition amount. Describe anything unusual in the plot.

(d)  Do the residuals appear to be approximately 
Normal? Explain.

(e)  Remove any unusual observations and repeat parts 
(b)–(d).

(f)  Compare the two sets of least-squares results. 
Describe any impact these unusual observations have on 
the results.

12.20 More on public university tuition. Refer to the 
previous exercise. Use all 33 observations for this 
exercise. TUIT

(a)  Give the null and alternative hypotheses for 
examining if there is a linear relationship between 2013 
and 2017 tuition amounts.

(b)  Write down the test statistic and P-value for the 
hypotheses stated in part (a). State your conclusions.

(c)  Construct a 95% confidence interval for the slope. 
What does this interval tell you about the annual percent 
increase in tuition between 2013 and 2017?

(d)  The tuition at CashCow U was $9200 in 2013. What 
is the predicted tuition in 2017?

(e)  The tuition at Moneypit U was $18,895 in 2013. 
What is the predicted tuition in 2017?

(f)  Discuss the appropriateness of using the fitted 
equation to predict tuition for each of these universities.

12.21 The timing of initial public offerings. 
Initial public offerings (IPOs) have tended to group 
together in time and in sector of business. Some 
researchers hypothesize this clustering is due to 
managers either speeding up or delaying the IPO 
process in hopes of taking advantage of a “hot” market, 
which will provide the firm with high initial valuations of 
its stock.11 The researchers collected information on 196 
public offerings listed on the Warsaw Stock Exchange 
over a six-year period. For each IPO, they obtained the 
length of the IPO offering period (the time between the 
approval of the prospectus and the IPO date) and three 
market return rates. The first rate was for the period 
between the date the prospectus was approved and the 
“expected” IPO date. The second rate was for the period 
90 days prior to the “expected” IPO date. The last rate 
was between the approval date and 90 days after the 
“expected” IPO date. The “expected” IPO date was the 

median length of the 196 IPO periods. They regressed the 
length of the offering period (in days) against each of the 
three rates of return. Here are the results:

Period b0 b1 P-value r

1 48.018 −129.391 0.0008 −0.238

2 49.478 −114.785 <0.0001 −0.414

3 47.613 −41.646 0.0463 −0.143

(a)  What does this table tell you about the relationship 
between the IPO offering period and the three market 
return rates?

(b)  The researchers argue that since the strongest 
correlation is for the second period and the weakest 
correlation is for the third period, there is evidence 
supporting their hypothesis. Do you agree with this 
conclusion? Explain your answer.

12.22 The relationship between log income and 
education level for employees. Recall Case 12.1 
(page 572). The researchers also looked at the 
relationship between education and log income for 
employees. An employee was defined as a person whose 
main employment status is a salaried job. Based on a 
sample of 100 employees: EMPL

(a)  Construct a scatterplot of log income versus education. 
Describe the relationship between the two variables. Is a 
linear relationship reasonable? Explain your answer.

(b)  Report the least-squares regression line.

(c)  Obtain the residuals and use them to assess the 
assumptions needed for inference.

(d)  In Example 12.5 (page 584), we constructed a 95% 
confidence interval for the slope of the entrepreneur 
population; it was (0.0208 to 0.2044). Construct a 
95% confidence interval for the slope of the employee 
population.

(e)  Compare the two confidence intervals. Do you think 
there is a difference in the two slopes? Explain your 
answer.

12.23 Incentive pay and job performance. In the 
National Football League (NFL), incentive bonuses now 
account for roughly 25% of player compensation.12 Does 
tying a player’s salary to performance bonuses result in 
better individual or team success on the field? Focusing 
on linebackers, let’s look at the relationship between a 
player’s end-of-the-year production rating and the 
percent of his salary devoted to incentive payments in 
that same year. PERPLAY

(a)  Use numerical and graphical methods to describe 
the two variables and summarize your results.

(b)  Neither variable is Normally distributed. Does 
that necessarily pose a problem for performing linear 
regression? Explain.

(c)  Construct a scatterplot of the data and describe 
the relationship. Are there any outliers or unusual 
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59312.1 Inference about the Regression Model

values? Does a linear relationship between the percent 
of salary from incentive payments and player rating 
seem reasonable? Is it a very strong relationship? 
Explain.

(d)  Run the simple linear regression and give the least-
squares regression line.

(e)  Obtain the residuals and assess whether the 
assumptions for the linear regression analysis are 
reasonable. Include all plots and numerical summaries 
that you used to make this assessment.

12.24 Incentive pay and job performance, continued. 
Refer to the previous exercise. PERPLAY

(a)  Now run the simple linear regression for the 
variables square root of rating and percent of salary 
from incentive payments.

(b)  Obtain the residuals and assess whether the 
assumptions for the linear regression analysis are 
reasonable. Include all plots and numerical summaries 
that you used to make this assessment.

(c)  Construct a 95% confidence interval for the square 
root increase in rating given a 1% increase in the percent 
of salary from incentive payments.

(d)  Consider the values 0%, 20%, 40%, 60%, and 80% 
salary from incentives. Compute the predicted rating 
for this model and for the one in Exercise 12.23. For 
the model in this exercise, you will need to square the 
predicted value to get back to the original units.

(e)  Plot the predicted values versus the percents, and 
connect those values from the same model. For which 
regions of percent do the predicted values from the two 
models vary the most?

(f)  Based on your comparison of the regression models 
(both predicted values and residuals), which model do 
you prefer? Explain.

12.25 Predicting public university tuition: 2008 
versus 2017. Refer to Exercise 12.19. The data file also 
includes the in-state undergraduate tuition for the year 
2008. TUIT

(a)  Plot the data with the 2008 tuition on the x axis, 
then describe the relationship. Are there any outliers or 
unusual values? Does a linear relationship between the 
tuition in 2008 and 2017 seem reasonable?

(b)  Fit the simple linear regression model and give the 
least-squares regression line and regression standard 
error.

(c)  Obtain the residuals and plot them versus the 2008 
tuition amount. Describe anything unusual in the plot.

(d)  Do the residuals appear to be approximately 
Normal? Explain.

12.26 Compare the analyses. In Exercises 12.19 and 
12.25, you used two different explanatory variables to 
predict university tuition in 2017. Summarize the two 
analyses and compare the results. If you had to choose 
between the two, which explanatory variable would you 
choose? Give reasons for your answers.

Age and income. The data file for the following exercises 
contains the age and income of a random sample of 5712 
men between the ages of 25 and 65 who have a bachelor’s 
degree but no higher degree. Figure 12.12 is a scatterplot 
of these data. Figure 12.13 displays Excel output for 
regressing income on age. The line in the scatterplot is the 
least-squares regression line. Exercises 12.27 through 
12.29 ask you to interpret this information. INAGE

12.27 Looking at age and income. The scatterplot in 
Figure 12.12 has a distinctive form.

(a)  Age is recorded as of the last birthday. How does this 
explain the vertical stacks of incomes in the scatterplot?

(b)  Give some reasons that older men in this population 
might earn more than younger men. Give some reasons 
that younger men might earn more than older men. 
What do the data show about the relationship between 
age and income in the sample? Is the relationship very 
strong?

(c)  What is the equation of the least-squares line for 
predicting income from age? What specifically does the 
slope of this line tell us?

FIGURE 12.12  Scatterplot of income against age  
for a random sample of 5712 men aged 25 to 65,  
for Exercises 12.27 to 12.29.
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594 Chapter 12 Inference for Regression

12.28 Income increases with age.  We see that older 
men do, on average, earn more than younger men, but 
the increase is not very rapid. (Note that the regression 
line describes many men of different ages—data on the 
same men over time might show a different pattern.)

   (a)   We know even without looking at the Excel output 
that there is highly significant evidence that the slope of 
the population regression line is greater than 0. Why do 
we know this?  

  (b)   Excel gives a 95% confidence interval for the slope 
of the population regression line. What is this 
interval?  

  (c)   Give a 99% confidence interval for the slope of the 
population regression line.     

12.29 Was inference justified?  You see from  Figure 
12.12  that the incomes of men at each age are (as 
expected) not Normal but right-skewed.

   (a)   How is this apparent on the plot?  

  (b)   Nonetheless, your confidence interval in the previous 
exercise will be quite accurate even though it is based on 
Normal distributions. Why?     

12.30 Regression to the mean?  Suppose a large 
population of test takers take the GMAT. You fear some 
cheating may have occurred so you ask those people 
who scored in the top 10% to take the exam again.

   (a)   If their scores, on average, decrease, is this evidence 
that there was cheating? Explain your answer.  

  (b)   If these same people were asked to take the test a 
third time, would you expect their scores to decline even 
further? Explain your answer.     

12.31 T-bills and inflation.   Exercises 12.8  through 
 12.10  interpret the part of the Excel output in 
 Figure 12.10  ( page 586 ) that concerns the slope—that 
is, the rate at which T-bill returns increase as the rate of 

inflation increases. Use this output to answer questions 
about the intercept.

   (a)   The intercept   β0   in the regression model is 
meaningful in this example. Explain what   β0   represents. 
Why should we expect   β0   to be greater than 0?  

  (b)   What values does Excel give for the estimated 
intercept   b0   and its standard error   bSE

0
  ?  

  (c)   Is there good evidence that   β0   is greater than 0?  

  (d)   Write the formula for a 95% confidence interval for 
β0  . Verify that the hand calculation (using the Excel 
values for   b0   and   bSE

0
  ) agrees approximately with the 

output in  Figure 12.10 .    

12.32 Is the correlation significant?  Two studies 
looked at the relationship between customer-relationship 
management (CRM) implementation and organizational 
structure. One study reported a correlation of   =r 0.33   
based on a sample of size   =n 25  . The second study 
reported a correlation of   =r 0.22   based on a sample 
of size   =n 62  . For each, test the null hypothesis that 
the population correlation   ρ = 0   against the one-sided 
alternative   ρ > 0  . Are the results significant at the 5% 
level? What conclusions would you draw based on both 
studies?  

12.33 Correlation between the prevalences of adult 
binge drinking and underage drinking.  A group of 
researchers compiled data on the prevalence of adult 
binge drinking and the prevalence of underage drinking 
in 42 states. 13  A correlation of   0.32   was reported.

   (a)   Test the null hypothesis that the population 
correlation   ρ = 0   against the alternative   ρ > 0  . Are the 
results significant at the 5% level?  

  (b)   Explain this correlation in terms of the direction 
of the association and the percent of variability in the 
prevalence of underage drinking that is explained by the 
prevalence of adult binge drinking.  

     FIGURE   12.13  Excel output for the regression of income on age, for  Exercises 12.27  
to  12.29 .  

Excel
A B C D E F G

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

SUMMARY OUTPUT

Multiple R
R Square
Adjusted R Square
Standard Error
Observations

ANOVA

Regression
Residual
Total

Intercept
Age

24874.3745
892.113523

2637.419757
61.7639029

9.431329401
14.44393054

5.749E-21
1.791E-46

19704.03079
771.0328323

30044.7182
1013.194214

1
5710
5711

4.73102E+11
1.29485E+13
1.34216E+13

4.73102E+11
2267692234

208.62713 1.79127E-46
df SS MS F Significance F

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

0.18774782
0.03524924
0.03508029
47620.2923

5712

Regression Statistics
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59512.1 Inference about the Regression Model

(c)  The researchers collected information from 42 of 50 
states so almost all the data available was used in the 
analysis. Provide an argument for the use of statistical 
inference in this setting.

12.34 Stocks and bonds. How is the flow of investors’ 
money into stock mutual funds related to the flow of 
money into bond mutual funds? Table 12.4 shows the 
net new money flowing into stock and bond mutual 
funds in the years 1984 to 2017, in millions of dollars.14 
“Net” means that funds flowing out are subtracted from 
those flowing in. If more money leaves than arrives, the 
net flow will be negative. FLOW

(a)  Make a scatterplot with cash flow into stock funds 
as the explanatory variable. Find the least-squares line 
for predicting net bond investments from net stock 
investments. What do the data suggest?

(b)  Is there statistically significant evidence of some 
straight-line relationship between the flows of cash into 

bond funds and stock funds? (State the hypotheses, 
give a test statistic and its P-value, and state your 
conclusion.)

(c)  Generate a plot of the residuals versus year. Describe 
any unusual patterns you see in this plot.

(d)  Given the 2008 financial crisis and its lingering 
effects, remove the data for the years after 2007 and 
refit the remaining years. Is there statistically significant 
evidence of a straight-line relationship?

(e)  Compare the least-squares regression lines and 
regression standard errors using all the years and using 
only the years before 2008.

(f)  How would you report these results in a paper? In 
other words, how would you handle the difference in 
relationship before and after 2008?

12.35 Size and selling price of houses. Table 12.5 
describes a random sample of 30 houses sold in a 

TABLE 12.4	 Net new money (millions of $) flowing into stock and bond mutual funds

Year Stocks Bonds Year Stocks Bonds Year Stocks Bonds

1984 4336 13,058 1996 216,937 3141 2008 −215,757 30,039

1985 6643 63,127 1997 227,106 29,166 2009 2013 371,123

1986 20,386 102,618 1998 156,875 74,656 2010 −24,385 232,351

1987 19,231 6797 1999 187,565 −4767 2011 −129,363 117,734

1988 −14,948 −4488 2000 315,705 −50,115 2012 −152,678 306,256

1989 6774 −1226 2001   33,483 88,463 2013 159,481 −70,771

1990 12,915 6833 2002 −29,310 141,865 2014 25,458 43,600

1991 39,888 59,258 2003 144,077 32,750 2015 −75,620 −25,270

1992 78,983 70,989 2004 171,945 −15,102 2016 −258,030 106,897

1993 127,260 72,169 2005 123,938 25,294 2017 −159,640 260,162

1994 114,525 −61,362 2006 147,804 59,448

1995 124,392 −5922 2007   73,307 110,609

TABLE 12.5	 Selling price and size of homes

Price  
($1000)

Size  
(sq ft)

Price  
($1000)

Size  
(sq ft)

Price  
($1000)

Size  
(sq ft)

268 1897 142 1329   83 1378

131 1157 107 1040 125 1668

112 1024 110   951   60 1248

112   935 187 1628   85 1229

122 1236   94   816 117 1308

128 1248   99 1060   57   892

158 1620   78   800 110 1981

135 1124   56   492 127 1098

146 1248   70   792 119 1858

126 1139   54   980 172 2010
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596 Chapter 12 Inference for Regression

    12.2    Using the Regression Line  

 Predictive analytics involves the use of various techniques from statistics to 
make predictions that help support decision making. One of the most com-
mon reasons to fit a line to data is to predict the response to a particular value 
of the explanatory, or predictor, variable. The method is simple: just substitute 
the value of   x   into the equation of the line. For example, the least-squares 
line for predicting log income of entrepreneurs from their years of education 
( Case 12.1 ) is 

   = +y xˆ 8.2546 0.1126    

 For an Educ of 16, our least-squares regression equation gives the prediction 

   = + =ŷ 8.2546 (0.1126)(16) 10.0562   

 When you complete 
this section, you will 
be able to: 

 When you complete  ●      Construct and interpret a confidence interval for a mean response when 
= ∗x x   .  

 ●   Construct and interpret a prediction interval for a future observation when 
= ∗x x   .  

 ●   Identify when a prediction interval should be constructed instead of a 
confidence interval.    

Midwest city during a recent year. 15  In this exercise, we 
examine the relationship between size and price. 

HSIZE 

    (a)   Plot the selling price versus the number of square 
feet. Describe the pattern. Does   r2   suggest that size is 
quite helpful for predicting selling price?  

  (b)   Do a linear regression analysis. Give the least-
squares line and the results of the significance test 
for the slope. What does your test tell you about the 
relationship between house size and selling price?     

   12.36 Are inflows into stocks and bonds correlated?  
Is the correlation between net flow of money into stock 
mutual funds and into bond mutual funds significantly 
different from 0? Use the regression analysis you did in 
 Exercise 12.34 , part (b), to answer this question with no 
additional calculations. FLOW  

   12.37 Do larger houses have higher prices?  We expect 
that there is a positive correlation between the sizes of 
houses in the same market and their selling prices. 

HSIZE

   (a)   Use the data in  Table 12.5  to test this hypothesis. 
(State the hypotheses, find the sample correlation   r   and 
the   t   statistic based on it, and give an approximate 
P  -value and your conclusion.)  

  (b)   How do your results in part (a) compare to the test 
of the slope in  Exercise 12.35 , part (b)?  

  (c)   To what extent do you think that these results would 
apply to other regions in the United States?     

12.38 Highway MPG and   CO2   emissions.  Let’s 
investigate the relationship between highway miles 
per gallon (MPGHwy) and carbon dioxide     emissions 
(CO2 Emissions) for cars that use premium gasoline as 
reported by Natural Resources Canada. 16 PREM

   (a)   Make a scatterplot of the data and describe the 
pattern.  

  (b)   Plot MPGHwy versus the logarithm of   CO2
emissions. Are these points closer to a straight line?  

  (c)   Regress MPGHwy by the logarithm of   CO2
emissions. Give a 95% confidence interval for the slope 
of the population regression line. Describe what this 
interval tells you in terms of percent change in   CO2
emissions for every one mile increase in highway miles 
per gallon.     

12.39 Influence?  Your scatterplot in  Exercise 12.35  
shows one house whose selling price is quite high for its 
size. Rerun the analysis without this outlier. Does this 
one house influence   r2  , the location of the least-squares 
line, or the   t   statistic for the slope in a way that would 
change your conclusions? HSIZE

12.40 Correlation between the observed and 
predicted   y  ’s.  Using your choice of software, fit the 
data of  Case 12.1  and obtain the log income predicted 
values   ŷ  . Then compute the correlation between these 
predicted values   ŷ   and log income values   y   and compare 
it to the correlation between   x   and   y   that is reported in 
 Example 12.2  ( page 574 ). Describe what you find. 

ENTRE
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59712.2 Using the Regression Line

Confidence and prediction intervals
In terms of inference, there are two different uses of this prediction. First, we 
can estimate the mean log income in the subpopulation of entrepreneurs with 
16 years of education. Second, we can predict the log income of one individ-
ual entrepreneur with 16 years of education.

For each use, the actual prediction is the same, =ŷ 10.0562. It is the margin 
of error that is different. Individual entrepreneurs with 16 years of education 
don’t all have the same log income. Thus, we need a larger margin of error 
when predicting an individual’s log income than when estimating the mean 
log income of all entrepreneurs who have 16 years of education.

To emphasize the distinction between predicting a single outcome and 
estimating the mean of all outcomes in the subpopulation, we use different 
terms for the two resulting intervals.

●● To estimate the mean response, we use a confidence interval. This is 
an ordinary confidence interval for the parameter

µ β β= + ∗xy 0 1

The regression model says that µy is the mean of responses y when = ∗x x .  
It is a fixed number whose value we don’t know because we don’t know β0 
and β1.

●● To estimate an individual response y, we use a prediction interval. A predic-
tion interval estimates a single random response y rather than a parameter 
like µy. Even if we know β0 and β1, the response y is not a fixed number. The 
model says that y varies Normally with a mean that depends on x.

Fortunately, the meaning of a prediction interval is very much like the 
meaning of a confidence interval. A 95% prediction interval, like a 95% con-
fidence interval, is right 95% of the time in repeated use. Consider doing the 
following many times:

1.	 Draw a sample of n observations x y( , ) and one additional observation 
( , ).x y∗

2.	 Calculate the 95% prediction interval for y when = ∗x x  using the n 
observations.

Being right means that the y value in the additional observation will be in 
the calculated interval 95% of the time.

Each interval has the usual form

± ∗y tˆ SE

where t SE*  is the margin of error. The main distinction is that because it is 
more difficult to predict a single observation (random variable) than the mean 
of a subpopulation (fixed value), the margin of error for the prediction inter-
val is wider than the margin of error for the confidence interval. Formulas 
for computing these quantities are given in Section 12.3. For now, we rely on 
software to do the arithmetic.

CONFIDENCE AND PREDICTION INTERVALS FOR REGRESSION RESPONSE

A level C confidence interval for the mean response µy when x takes 
the value ∗x  is

± µ
∗y tˆ SE ˆ

Here, µSE ˆ  is the standard error for estimating a mean response. The 
margin of error is = µ

∗m t SE ˆ.

prediction interval, 
p. 383
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598 Chapter 12 Inference for Regression

 A level   C    prediction interval for a single observation  on   y   when   x   takes 
the value   ∗x    is 

   ± ∗y t yˆ SE ˆ   

 Here,   ySE ˆ   is the standard error for predicting an individual response and 
the  margin of error  is   = ∗m t ySE ˆ  . 

 The standard error   ySE ˆ   is larger than the standard error   µSE ˆ   . 

 In both cases,   ∗t    is the value for the   −t n( 2)   density curve with area   C   
between   − ∗t    and   ∗t   .  

 Before moving on to the examples, it is important to note that predicting an 
individual response is an exception to the general fact that regression inference 
is robust against lack of Normality.  The prediction interval relies on Normality 
of individual observations, not just on the approximate Normality of statistics 
like the slope   b1   and intercept   b0   of the least-squares line.  In practice, this means 
that we should regard prediction intervals as rough approximations. 

      Predicting Loginc from Educ    Jacob Brown is an entrepreneur with 
  =Educ 16   years of education. We don’t know his log income, but we 

can use the data on other entrepreneurs to predict it. 
 Statistical software usually allows prediction of the response for each 

  x  -value in the data and also for new values of   x  . Here is the output from the 
prediction option in the Minitab regression command for   =∗x 16   when we 
ask for 95% intervals: 

      Fit  SE Fit 95% CI 95% PI 

  10.0560 0.167802 (9.72305, 10.3890) (7.81924, 12.2929) 

 The “Fit” entry gives the predicted log income, 10.0560. This agrees with 
our hand calculation within the rounding error. Minitab gives both 95% inter-
vals; you must then choose which one you want. We are predicting a single 
response, so the prediction interval “95% PI” is the right choice. We are 95% 
confident that Jacob’s log income lies between 7.81924 and 12.2929. This is 
a wide range because the data are widely scattered about the least-squares 
line. The 95% confidence interval for the mean log income of all entrepre-
neurs with   =EDUC 16  , given as “95% CI,” is much narrower. ■ 

 Note that Minitab reports only one of the two standard errors—the stan-
dard error for estimating the mean response,   =µSE 0.1678ˆ   . A graph will help 
us to understand the difference between the two types of intervals.  

      Comparing the Two Intervals     Figure 12.14  displays the data, the least-
squares line, and both intervals. The confidence interval for the 

mean is the solid red vertical line. The prediction interval for Jacob’s indi-
vidual log income level is the dashed black vertical line. You can see that the 
prediction interval is much wider and that it matches the vertical spread of 
entrepreneurs’ log incomes about the regression line. ■ 

       Some software packages will graph the intervals for all values of the 
explanatory variable within the range of the data. With this type of display, we 
can see the difference between the two types of intervals across the range of   x  .  

  

 ENTRE 

 ENTRE 

  Comparing the Two Intervals     Figure 12.14  displays the data, the least-
squares line, and both intervals. The confidence interval for the 

 EXAMPLE 12.8 

  Predicting Loginc from Educ    Jacob Brown is an entrepreneur with 
Educ 16   years of education. We don’t know his log income, but we 

EXAMPLE 12.7
 CASE 
12.1 

 CASE 
12.1 
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59912.2 Using the Regression Line

     FIGURE   12.14  Confidence 
interval for mean log income 
(solid red) and prediction 
interval for individual log 
income (dashed black) for an 
entrepreneur with 16 years of 
education. Both intervals are 
centered on the predicted value 
from the least-squares line, 
which is ŷ  = 10.056 for  x*  = 16.  
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      Graphing the Confidence Intervals    The confidence intervals for the log 
income data are graphed in  Figure 12.15  . For each value of Educ, 

we see the estimated value on the solid line and the confidence limits on the 
dashed curves. ■ 

  Graphing the Confidence Intervals   
income data are graphed in  Figure 12.15  . For each value of Educ, 

EXAMPLE 12.9

     FIGURE   12.15  95% 
confidence intervals for mean 
response for the annual income 
data, for  Example 12.9 .  
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 Notice that the intervals get wider as the values of Educ move away from 
the mean of this variable. This phenomenon reflects the fact that we have less 
information for estimating means that correspond to extreme values of the 
explanatory variable.  

      Graphing the Prediction Intervals    The prediction intervals for the log 
income data are graphed in  Figure 12.16  . As with the confidence 

intervals, we see the predicted values on the solid line and the prediction lim-
its on the dashed curves. ■ 

      It is much easier to see the curvature of the confidence limits in  Figure 
12.15  than the curvature of the prediction limits in  Figure 12.16 . One reason 

  CASE 
12.1  

  Graphing the Prediction Intervals   
income data are graphed in  Figure 12.16  . As with the confidence 

EXAMPLE 12.10
 CASE 
12.1 
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600 Chapter 12 Inference for Regression

for this is that the prediction intervals in  Figure 12.16  are dominated by the 
entrepreneur-to-entrepreneur variation. On the one hand, because the predic-
tion intervals are concerned with individual predictions, they contain a very 
large proportion of the observations. On the other hand, the confidence inter-
vals are designed to contain mean values and are not concerned with individ-
ual observations. 

 Because we transformed income to better fit the model conditions for sim-
ple linear regression, our predictions are on the log scale (in log dollars). To 
get a prediction on the original scale (dollars), we can    back-transform    the 
predictions from our linear model. The inverse of the logarithm function is 
the exponential function. Thus, we could naively estimate the average income 
by exponentiating the log dollars estimate and exponentiating the endpoints 
of the confidence interval to get an approximate 95% confidence interval for 
the average income. For example, the average income for entrepreneurs with 

=x 16   years of education is   =e $23,29510.0560    and the 95% confidence interval 
is ($16,698, $32,500). 

 These calculations, however, provide an estimate and confidence interval 
for the median income rather than the mean. In fact, the regression model 
implies that income has a    logNormal distribution.    An estimate and confi-
dence interval for the mean income can still be constructed from the regres-
sion model estimates but the calculations are more complicated. We suggest 
seeking expert advice when a situation like this arises. 

       12.41 Predicting the mean Loginc.  In  Example 12.7 , software predicts the 
mean log income of entrepreneurs with 16 years of education to be 

=ŷ 10.0560  . We also see that the standard error of this estimated mean 
is   =µSE 0.167802ˆ   . These results come from data on 100 entrepreneurs.

      (a) Use these facts and   =∗t 1.984   to verify by hand Minitab’s 95% confi-
dence interval for the mean log income when   Educ 16=   .  

     (b) Use the same information to construct a 90% confidence interval 
for the mean log income when   Educ 16.=    Make sure to specify what 
degrees of freedom are used to obtain   ∗t   .     

   12.42 Predicting the return on Treasury bills.   Table 12.1  ( page 585 ) gives 
data on the rate of inflation and the percent return on Treasury bills 
for 60 years.  Figures 12.9  and  12.10  analyze these data. You think that 
next year’s inflation rate will be 2.25%.  Figure 12.17   displays part of the 

    back-transform      

    logNormal distribution      

     FIGURE   12.16  95% prediction 
intervals for individual response 
for the annual income data, for 
 Example 12.10 .  
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       12.41 Predicting the mean Loginc.  In  Example 12.7 , software predicts the 
mean log income of entrepreneurs with 16 years of education to be 

  APPLY YOUR KNOWLEDGE  
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60112.2 Using the Regression Line

Minitab regression output, including predicted values for   =∗x 2.25  . The 
basic output agrees with the Excel results in  Figure 12.10 .

      (a) Verify the predicted value   =ŷ 3.617   from the equation of the least-
squares line.  

     (b) What is your 95% interval for predicting next year’s return on Trea-
sury bills?      

        BEYOND THE BASICS

Nonlinear regression   

 The simple linear regression model assumes that the relationship 
between the response variable and the explanatory variable can be 
summarized with a straight line. When the relationship is not linear, 
we can sometimes transform one or both of the variables so that the 
relationship becomes linear.  Case 12.1  is an example in which the 
relationship of   log    y   with   x   is linear. In other circumstances, we use 
  nonlinear models   that directly express a curved relationship using 
parameters that are not just intercepts and slopes. 

 Here is a typical example of a model that involves parameters   β0   and 
  β1   in a nonlinear way: 

   β ε= +βy xi i i0
1    

 This nonlinear model still has the form 

   = +DATA FIT RESIDUAL   

 The FIT term describes how the mean response   µy   depends on   x  . 
 Figure 12.18  shows the form of the mean response for several values 
of   β1   when   β = 10   . Choosing   β = 11    produces a straight line, but other 
values of   β1   result in a variety of curved relationships. 

   We cannot write simple formulas for the estimates of the parameters 
  β0   and   β1  , but software can calculate both estimates and approximate 
standard errors for the estimates. If the deviations   εi   follow a Normal 
distribution, we can do inference both on the model parameters and for 
prediction. The details become more complex, but the ideas remain the 
same as those we have studied. 

    nonlinear models      

     FIGURE   12.17  Minitab output 
for the regression of the percent 
return on Treasury bills against 
the rate of inflation in the same 
year, for  Exercise 12.42 . The 
output includes predictions 
of the T-bill return when the 
inflation rate is 2.25%.  

Minitab

Model SummaryModel Summary

CoefficientsCoefficients

Regression EquationRegression Equation

SS

TermTerm

VariableVariable SettingSetting
InflationInflation 2.252.25

Constant
Inflation
Constant
Inflation

TBILL     =     1.916 + 0.7559 INFLATIONTBILL     =     1.916 + 0.7559 INFLATION

SettingsSettings

PredictionPrediction

CoefCoef

1.916
0.7559

1.916
0.7559

SE CoefSE Coef

0.462
0.0989

0.462
0.0989

T-ValueT-Value

4.14
7.65
4.14
7.65

P-ValueP-Value

0.000
0.000
0.000
0.000

VIFVIF

1.001.00

FitFit

3.616563.61656

SE FitSE Fit

0.3166690.316669

95% CI95% CI 95% PI95% PI

(-0.804197, 8.03731)(-0.804197, 8.03731)(2.98267, 4.25044)(2.98267, 4.25044)

2.185662.18566

R-sqR-sq

50.20%50.20%

R-sq(adj)R-sq(adj)

49.35%49.35%

R-sq(pred)R-sq(pred)

46.31%46.31%
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602 Chapter 12 Inference for Regression

    SECTION   12.2  SUMMARY  
 ●   The  estimated mean response  for the subpopulation corresponding to 

the value   x∗   of the explanatory variable is found by substituting   = ∗x x    in the 
equation of the least-squares regression line:

   = = + ∗y b b xestimated mean response ˆ 0 1     

 ● The  predicted value of the response   y    for a single observation from the 
subpopulation corresponding to the value   x∗   of the explanatory variable is 
found in exactly the same way:

   = = + ∗y b b xpredicted individual response ˆ 0 1    

 ● Confidence intervals for the mean response   µy    when   x   has the value   x∗   
have the form

   y t± µ
∗ˆ SE ˆ     

 ●   Prediction intervals  for an individual response   y   have a similar form with 
a larger standard error:

y t y± ∗ˆ SE ˆ

 In both cases,   t∗   is the value for the   −t n( 2)   density curve with area   C   between 
t− ∗   and   t∗  . Software often gives these intervals. The standard error   ySE ˆ   for an 

individual response is larger than the standard error   µSE ˆ    for a mean response 
because it must account for the variation of individual responses around 
their mean.  

    SECTION   12.2  EXERCISES  
For  Exercises 12.41  and  12.42 , see  pages 600–601 .  

Many of the following exercises require use of software 
that will calculate the intervals required for predicting 
mean response and individual response.  

12.43 More on public university tuition.  Refer to 
 Exercises 12.19  and  12.20  (page 592). TUIT

   (a)   The tuition at CashCow U was $9200 in 2013. Find 
the 95% prediction interval for its tuition in 2017.  

  (b)   The tuition at Moneypit U was $18,895 in 2013. Find 
the 95% prediction interval for its tuition in 2017.  

  (c)   Compare the widths of these two intervals. Which is 
wider and why?     

12.44 More on assessment value versus sales price.  
Refer to  Exercise 12.17  (page 591). Suppose we’re interested 
in determining whether the population regression line 
differs from   =y x.   We’ll look at this three ways. HSALES

0.0

14

Explanatory variable x

M
ea

n 
re

sp
on

se
 µ
y

0.5 1.0 1.5 2.0

12

10

8

6

4

2

0

16

β1 = −2

β1 = 1

β1 = 2

β1 = 4

     FIGURE   12.18  The nonlinear model µ β= βxy 0
1 includes these 

and other relationships between the explanatory variable  x  and 
the mean response.  
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60312.2 Using the Regression Line

(a)  Construct a 95% confidence interval for each 
property in the data set. If the model =y x is reasonable, 
then the assessed value used to predict the sales price 
should be in the interval. Is this true for all x y( , ) pairs?

(b)  The model =y x means β = 00  and β = 1.1  Test each 
of these hypotheses. Is there enough evidence to reject 
either of them?

(c)  Recall that not rejecting H0 does not imply H0 is true. 
A test of “equivalence” would be a more appropriate 
method to assess similarity. Suppose that, for the slope, 
a difference within ±0.05% is considered not different. 
Construct a 90% confidence interval for the slope and 
see if it falls entirely within the interval (0.95, 1.05). If it 
does, we would conclude that the slope is not different 
from 1. What is your conclusion using this method?

12.45 Predicting 2017 tuition from 2013 tuition. 
Refer to Exercise 12.19 (page 592). TUIT

(a)  Find a 95% confidence interval for the mean tuition 
amount corresponding to a 2013 tuition of $10,403.

(b)  Find a 95% prediction interval for a future response 
corresponding to a 2013 tuition of $10,403.

(c)  Write a short paragraph interpreting the meaning of 
the intervals in terms of public universities.

(d)  Do you think that these results can be applied to 
private universities? Explain why or why not.

12.46 Predicting 2017 tuition from 2008 tuition. 
Refer to Exercise 12.25 (page 593). TUIT

(a)  Find a 95% confidence interval for the mean tuition 
amount corresponding to a 2008 tuition of $7568.

(b)  Find a 95% prediction interval for a future response 
corresponding to a 2008 tuition of $7568.

(c)  Write a short paragraph interpreting the meaning of 
the intervals in terms of public universities.

(d)  Do you think that these results can be applied to 
private universities? Explain why or why not.

12.47 Compare the estimates. Case 20 in Table 12.3 
(Wisconsin) has a 2008 tuition of $7568 and a 2013 tuition 
of $10,403. A predicted 2017 tuition amount based on 2013 
tuition was computed in Exercise 12.45, while one based on 
the 2008 tuition was computed in Exercise 12.46. Compare 
these two estimates and explain why they differ. Use the 
idea of a prediction interval to interpret these results.

12.48 Is the price right? Refer to Exercise 12.35  
(page 595), where the relationship between the size of a 
home and its selling price is examined. HSIZE

(a)  Suppose that you have a client who is thinking about 
purchasing a home in this area that is 1750 square feet 
in size. The asking price is $180,000. What advice would 
you give this client?

(b)  Answer the same question for a client who is looking 
at a 1300-square-foot home that is selling for $110,000.

12.49 Predicting income from age. Figures 12.12 and 
12.13 (pages 593 and 594) analyze data on the age and 

income of 5712 men between the ages of 25 and 65. 
Here is Minitab output predicting the income for ages 
30, 40, 50, and 60 years:

Prediction

Fit	 SE Fit	 95% CI	 95% PI

51638	 948	 ( )49780, 53496 	 ( )−41735, 145010

	60559	 637	 ( )59311, 61807 	 ( )−32803, 153921

	69480	 822	 ( )67870, 71091 	 ( )−23888, 162848

	78401	 1307	 ( )75840, 80963 	 ( )−14988, 171790

(a)  Use the regression line from Figure 12.12 to verify 
the “Fit” for age 30 years.

(b)  Report the 95% confidence interval for the income 
of all 30-year-old men.

(c)  Joseph is 30 years old. You don’t know his income, 
so give a 95% prediction interval based on his age alone. 
How useful do you think this interval is?

12.50 Predict what? The two 95% intervals for the 
income of 30-year-olds given in Exercise 12.49 are very 
different. Explain briefly to someone who knows no 
statistics why the second interval is so much wider than 
the first. Start by looking at 30-year-olds in Figure 12.12.

12.51 Predicting income from age, continued. Use the 
computer outputs in Figure 12.13 and Exercise 12.49 to 
give a 90% confidence interval for the mean income of 
all 40-year-old men.

12.52 T-bills and inflation. Figure 12.17 (page 601) 
gives part of a regression analysis of the data in Table 
12.1 relating the return on Treasury bills to the rate of 
inflation. The output includes prediction of the T-bill 
return when the inflation rate is 2.25%.

(a)  Use the output to give a 90% confidence interval for the 
mean return on T-bills in all years having 2.25% inflation.

(b)  You think that next year’s inflation rate will be 
2.25%. It isn’t possible, without complicated arithmetic, 
to give a 90% prediction interval for next year’s T-bill 
return based on the output displayed. Why not?

12.53 Two confidence intervals. The data used for 
Exercise 12.49 include 195 men who are 30 years old. 
The mean income of these men is =y $49,880 and the 
standard deviation of these 195 incomes is =sy $38,250.

(a)  Use the one-sample t procedure to give a 95% 
confidence interval for the mean income µy of 
30-year-old men.

(b)  Why is this interval different from the 95% 
confidence interval for µy in the regression output? 
(Hint: Which data are used by each method?)

12.54 Size and selling price of houses. Table 12.5 
(page 595) gives data on the size in square feet of a 
random sample of houses sold in a Midwest county 
along with their selling prices. HSIZE

(a)  Find the mean size x  of these houses and also 
their mean selling price y. Give the equation of the 
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604 Chapter 12 Inference for Regression

    12.3    Some Details of Regression Inference  

   When you complete 
this section, you will 
be able to  

 ●    Use ANOVA table output to perform the ANOVA   F    test and draw 
appropriate conclusions regarding   H : 0.0 1β =     

 ●   Use ANOVA table output to compute the square of the sample correlation 
and provide an interpretation of it in terms of explained variation.  

 ●   Perform, using a calculator or spreadsheet, inference in simple linear 
regression when software is not available.  

 ●   Distinguish the formulas for the standard error that we use for a 
confidence interval for the mean response and the standard error that we 
use for a prediction interval when   x x= ∗  .    

least-squares regression line for predicting price from 
size, and use it to predict the selling price of a house of 
mean size. (You knew the answer, right?)  

  (b)   Zoey and Aiden are selling a house in this Midwest 
county whose size is equal to the mean of this sample. 

Give an interval that predicts the price they will receive 
with 95% confidence.  

  (c)   Compare the prediction interval you used in part (b) 
to the prediction interval for a new observation from a 

µ σ( , )N    population described in  Chapter 7  ( page 385 ).         

 We have assumed that you will use software to handle regression in practice. 
If you do, it is much more important to understand what the standard error of 
the slope   bSE

1
   means than it is to know the formula your software uses to find 

its numerical value. For that reason, we have not yet given formulas for the 
standard errors. We have also not explained the block of output from software 
that is labeled “ANOVA” or “Analysis of Variance.” This section addresses both 
of these omissions. 

    Standard errors   
 In this section, we give the formulas for all the standard errors we have 
encountered, for two reasons. First, you may want to see how these formu-
las can be obtained from facts you already know. The second reason is more 
practical: some software (in particular, spreadsheet programs) does not auto-
mate inference for prediction. Fortunately, almost all software does the hard 
work of calculating the regression standard error   s.   With   s   in hand, the rest is 
straightforward—but only if you know the details. 

 Tests and confidence intervals for the slope of a population regression line 
start with the slope   b1   of the least-squares line and with its standard error   bSE

1
.   

If you are willing to skip some messy algebra, it is easy to see where   bSE
1
   and 

the similar standard error   bSE
0
   of the intercept come from. 

   1.   The regression model takes the explanatory values   xi   to be fixed num-
bers and the response values   yi   to be independent random variables all 
having the same standard deviation   σ  .  

  2.   The least-squares slope is   =b rs sy x/1   . Here is the first bit of messy alge-
bra that we skip: it is possible to write the slope   b1   as a linear function 
of the responses,   ∑=b a yi i1   . The coefficients   ai   depend on the   xi  , so 
they are fixed numbers, too.  

  3.   We can find the variance of   b1   by applying the rule for the variance of 
a sum of independent random variables; it is just   ∑σ ai

2 2  . A second 
piece of messy algebra shows that this simplifies to   

   
∑

σ
σ

=
−x xb

i( )1
2

2

2    

      rules for variances,   
   pp. 240–241   

   When you complete 
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60512.3 Some Details of Regression Inference

 The standard deviation   σ   about the population regression line is, of course, 
not known. If we estimate it by the regression standard error   s   based on the 
residuals from the least-squares line, we get the standard error of   b .1    Here are 
the results for both the slope and the intercept. 

      STANDARD ERRORS FOR SLOPE AND INTERCEPT  

 The standard error of the slope   b1   of the least-squares regression line is 

∑
=

−

s

x x
b

i

SE
( )1 2

 The standard error of the intercept   b0   is 

   
∑

= +
−

s
n

x
x xb

i
SE

1
( )0

2

2     

 The critical fact is that both standard errors are multiples of the regression 
standard error   s  . In a similar manner, accepting the results of yet more messy 
algebra, we get the standard errors for the two uses of the regression line that 
we have studied.   

   STANDARD ERRORS FOR TWO USES OF THE REGRESSION LINE  

 The standard error for estimating the mean response when the explana-
tory variable   x   takes the value   ∗x    is 

s
n

x x
x xi∑

= +
−

−µ

∗

�SE
1 ( )

( )

2

2    

 The standard error for predicting an individual response when   x x= ∗   is 

   s
n

x x
x xy

i∑
= + +

−
−

∗

�SE 1
1 ( )

( )

2

2    

    = +µ sSE ˆ
2 2     

 Once again, both standard errors are multiples of   s  . The only difference 
between the two prediction standard errors is the extra 1 under the square 
root sign in the standard error for predicting an individual response. This 
added term reflects the additional variation in individual responses, just as it 
did in  Section 7.4  ( page 385 ) when we considered predicting a new observa-
tion from a N  µ σ( , )   population. It also implies that   ySE ˆ   is always greater than 
  µSE ˆ   . 

      Prediction Intervals from a Spreadsheet    In  Example 12.7 , we used statisti-
cal software to predict the log income of Jacob, who has   =Educ 16   years of 
education. Suppose that we have only the Excel spreadsheet. The prediction 
interval then requires some additional work. 

     Step 1.   From the Excel output in  Figure 12.5  ( page 579 ), we know that 
  =s 1.1146  . Excel can also find the mean and variance of the Educ   x   for the 
100 entrepreneurs. They are   =x 13.28   and   =sx 5.9012   .  

  Prediction Intervals from a Spreadsheet   
cal software to predict the log income of Jacob, who has   

EXAMPLE 12.11
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606 Chapter 12 Inference for Regression

Step 2.  We need the value of   ∑ −x xi( )2  . Recalling the definition of the vari-
ance, we see that this is just

∑ − = −x x n si x( ) ( 1)2 2

= =(99)(5.901) 584.2

   Step 3.   The standard error for predicting Jacob’s log income from his years of 
education,   =∗x 16  , is

   s
n

x x
x xy

i∑
= + +

−
−

∗

�SE 1
1 ( )

( )

2

2    

= + +
−

1.1146 1
1

100
(16 13.28)

584.2

2

= + +1.1146 1
1

100
7.3984
584.2

= =(1.1146)(1.01127) 1.12716    

   Step 4.   We predict Jacob’s log income from the least-squares line ( Figure 12.5  
again):

   = + =ŷ 8.2546 (0.1126)(16) 10.0562   

 This agrees with the “Fit” from software in  Example 12.7 . The 95% predic-
tion interval requires the 95% critical value for   t(98)  . Using Excel, the function 
  = T.INV(0.975, 98)   gives   =t 1.984*   . The interval is 

± = ±y t yˆ SE 10.0562 (1.984)(1.12716)*
ˆ

= ±10.0562 2.2363   

= 7.8199 to 12.2925     

 This agrees with the software result in  Example 12.7 , with a small differ-
ence due to roundoff. ■ 

 The formulas for the standard errors of mean estimation and predicting an 
individual response show us one more thing about prediction. They both contain 
the term   x x−∗( )2  , the squared distance of the value   ∗x    for which we want to do 
prediction from the mean   x   of the   x  -values in our data. We see that prediction is 
most accurate (smallest margin of error) at the mean and grows less accurate as 
we move away from the mean of the explanatory variable.  If you know the values of 
  x   for which you want to do prediction, try to collect data centered near these values.   

      12.55 T-bills and inflation.   Figure 12.10  ( page 586 ) gives the Excel output 
for regressing the annual return on Treasury bills on the annual rate of 
inflation. The data appear in  Table 12.1  ( page 585 ). Starting with the 
regression standard error   =s 2.1857   from the output and the variance 
of the inflation rates in  Table 12.1  (use your calculator), find the stan-
dard error of the regression slope   SE

1b
  . Check your result against the 

Excel output. INFLAT   

   12.56 Predicting T-bill return.   Figure 12.17  ( page 601 ) uses statistical soft-
ware to predict the return on Treasury bills in a year when the inflation 
rate is 2.25%. Let’s do this calculation without specialized software.  Figure 
12.10  contains Excel regression output. Use a calculator or software to find 
the variance   sx

2   of the annual inflation rates in  Table 12.1  ( page 585 ). From 
this information, find the 95% prediction interval for the T-bill return. 
Check your result against the software output in  Figure 12.17 . INFLAT      

      12.55 T-bills and inflation.   Figure 12.10  ( page 586 ) gives the Excel output 
for regressing the annual return on Treasury bills on the annual rate of 

  APPLY YOUR KNOWLEDGE  
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60712.3 Some Details of Regression Inference

Analysis of variance for regression
Software output for regression problems, such as those in Figures 12.5, 12.6, 
and 12.10, reports values under the heading of “ANOVA” or “Analysis of Vari-
ance.” Analysis of variance (ANOVA) is the term for statistical analyses that 
break down the variation in data into separate pieces that correspond to dif-
ferent sources of variation. We used it in Chapter 9 to compare several pop-
ulation means by breaking down the total variation, expressed by sums of 
squares, into the variation among groups and the variation within groups. In 
the regression setting, the observed variation in the responses yi also comes 
from two sources:

●● As the explanatory variable x moves, it pulls the response with it along 
the regression line. In Figure 12.4, for example, entrepreneurs with 15 years 
of education generally have higher log incomes than those entrepreneurs 
with 9 years of education. The least-squares line drawn on the scatterplot 
describes this tie between x and y.

●● When x is held fixed, y still varies because not all individuals who share a 
common x have the same response y. There are several entrepreneurs with 
11 years of education, and their log income values are scattered above and 
below the least-squares line.

We discussed these sources of variation in Chapter 2, where the main point 
was that the squared correlation r2 is the proportion of the total variation in 
the responses that comes from the first source, the straight-line tie between 
x and y. Analysis of variance for regression expresses these two sources of 
variation in algebraic form so that we can calculate the breakdown of overall 
variation into two parts. Skipping quite a bit of messy algebra, the analysis of 
variance equation that always holds is

total variation in y = variation along the line + variation about the line

SST = SSR + SSE

∑ −y yi( )2 = �∑ −y yi( )2 + ∑ −y yi i( ˆ )2

This breakdown is commonly summarized in the form of an ANOVA table:

Source
Degrees of 
freedom Sum of squares Mean square F

Regression =DFR 1 �∑= −y yiSSR ( )2 =MSR  
SSR DFR

MSR/MSE

Residual = −nDFE 2 ∑= −y yi iSSE ( ˆ )2 =MSE  
SSE DFE

Total = −nDFT 1 ∑= −y yiSST ( )2

The “total variation in y,” which we label SST, is expressed by the sum 
of the squares of the deviations −y yi . Similar to Chapter 9, it is just −n 1 
times the variance of the responses. The “variation along the line,” labeled 
SSR, has the same form but is the variation among the predicted responses yiˆ . 
The predicted responses lie on the least-squares regression line—they show 
how y moves in response to x. The more y moves in response to x, the larger 
this term will be. The “variation about the line,” labeled SSE, is the sum 
of squares of the residuals −y yi iˆ . It measures the size of the scatter of the 
observed responses above and below the line. If all the responses fell exactly 
on a straight line, the residuals would all be 0. In such a case, there would be 
no variation about the line =(SSE 0) and the total variation would equal the 
variation along the line =(SST  SSR). The other extreme is when =b 01 . In 
that case, =y yiˆ  so SSR = 0 and =SST  SSE.

squared correlation 
2r , p. 88

analysis of variance equation

ANOVA table,  
p. 475

sums of squares, 
p. 471
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608 Chapter 12 Inference for Regression

              ANOVA for Entrepreneur Income Study     Figure 12.19   repeats  Figure 
12.5 ; it shows the Excel output for the regression of log income on 

years of education ( Case 12.1 ). The three terms in the analysis of variance 
equation appear under the “SS” heading, reflecting the fact that each of the 
three terms is a sum of squared quantities. You can read the output as follows: 

 SST    =    SSR    +    SSE 

 129.1534        =    7.4048    +    121.7486 

 

Excel
A B C D E F G

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

SUMMARY OUTPUT

Multiple R
R Square
Adjusted R Square
Standard Error
Observations

ANOVA

Regression
Residual
Total

Intercept
Educ

8.254643317
0.112587853

0.622482517
0.046116142

13.26084
2.441398

1.35E-23
0.016424

7.019347022
0.021071869

9.489939612
0.204103836

1
98
99

7.404826509
121.7485605

129.153387

7.404827
1.242332

5.960424 0.016424076
df SS MS F Significance F

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

0.239444323
0.057333584
0.047714539
1.114599592

100

Regression Statistics

 Excel uses the names “Total,” “Regression,” and “Residual” for these three 
sources of variation. Other software (see  Figure 12.6 ,  page 579 ) may use other 
row names. 

T he proportion of variation in log incomes explained by regressing on 
years of education is 

   =r
SSR
SST

2    

    = =
7.4048

129.1534
0.0573   

 This agrees with the “R Square” value in the output. Only about 6% of the 
variation in log incomes is explained by the linear relationship between log 
income and years of education. The rest is variation in log incomes among 
entrepreneurs with the same level of education. ■ 

 The remaining columns of the ANOVA table are similar to those described 
in  Chapter 9 . For the degrees of freedom column, the total degrees of free-
dom (DFT) are   − =n 1 99   (the degrees of freedom for the variance of   =n 100   
observations). We know that the degrees of freedom for the residuals (DFE) 
and for   t   statistics in simple linear regression are   −n 2  . Therefore, it is no 
surprise that the degrees of freedom for the residual sum of squares are also 
  − =n 2 98  . That leaves just 1 degree of freedom for regression (DFR), because 
degrees of freedom in ANOVA are added as follows: 

 DFT    =    DFR        +    DFE 

−n 1    =    1    +      −n 2   

 The next column reports the mean squares, obtained by dividing each 
sum of squares by its degrees of freedom. The total mean square (not given in 

 ENTRE 

     FIGURE   12.19  Excel output 
for the regression of log annual 
income on years of education, 
for  Examples 12.12  and  12.13 . 
We now concentrate on the 
analysis of variance part of the 
output.  

  Case 
12.1   

      

degrees of freedom, 
p. 33

      mean squares,   
   p. 472   

  ANOVA for Entrepreneur Income Study   
12.5 ; it shows the Excel output for the regression of log income on 

  Case 
12.1   

 EXAMPLE 12.12 
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60912.3 Some Details of Regression Inference

the output) is just the variance of the responses   yi  . The residual mean square 
(MSE) is the square of our old friend, the regression standard error: 

=MSE
SSE
DFE

   ∑=
−

−
y y

n
i i( ˆ )

2

2

   

   = s2   

 This is why the JMP output in Figure 12.6 labels   s   as the “Root Mean Square Error.” 
 The next column is named “F” and is the ratio of the two calculated mean 

squares: 

   =F
MSR
MSE

   

 This ANOVA   F    statistic provides a different way to test for the overall signifi-
cance of the regression. Its   P   -value is displayed in the last column named “Sig-
nificance   F   .” This is computed from an   F    distribution with 1 and   − =n 2 98
degrees of freedom.  Table E  in the back of the book contains the   F    critical 
values to compare the ANOVA   F    statistic against. 

  Recall that if regression on   x   has no value for predicting   y  , we expect the 
slope of the population regression line to be close to zero. That is, the null 
hypothesis of “no linear relationship” is   β =H : 00 1   . To test   H0  , we standardize 
the slope of the least-squares line to get a   t   statistic. The ANOVA approach 
starts instead with sums of squares. If regression on   x   has no value for pre-
dicting   y  , we expect the SSR to be only a small part of the SST, most of which 
will be made up of the SSE. That, in turn, means we expect   F    to be small. 

 For simple linear regression, the ANOVA   F    statistic always equals the 
square of the   t   statistic for testing   β =H : 00 1   . That is, the two tests amount to 
the same thing. Let’s verify that relationship using  Case 12.1 .   

      ANOVA for Entrepreneur Income Study, Continued    The Excel output in 
 Figure 12.19  contains the values for the analysis of variance equa-

tion for sums of squares and also the corresponding degrees of freedom. The 
residual mean square is 

    =MSE
SSE
DFE

   

   = =
121.7486

98
1.2423   

 The square root of the residual MS is   =1.2423 1.1146  . This is the regres-
sion standard error   s  , as claimed. The ANOVA   F    statistic is 

   =F
MSR
MSE

   

   = =
7.4048
1.2423

5.9604   

 The square root of   F    is   =5.9604 2.441  . Sure enough, this is the value of 
the   t   statistic for testing the significance of the regression, which also appears 
in the Excel output. The   P   -value for   F   ,   =P 0.0164  , is the same as the two-sided 
  P   -value for   t  . ■ 

 We have now explained almost all the results that appear in a typical 
regression output such as  Figure 12.19 . ANOVA shows exactly what   r2   means 

      ANOVA   F   statistic,   
   p. 473   

  ANOVA for Entrepreneur Income Study, Continued   
 Figure 12.19  contains the values for the analysis of variance equa-

EXAMPLE 12.13

        F   distribution,   
   p. 473   

 CASE 
12.1 

13_psbe5e_10900_ch12_569_616.indd   609 15/07/19   10:43 AM
Copyright ©2020 W.H. Freeman Publishers. Distributed by W.H. Freeman Publishers. Not for redistribution. 



610 Chapter 12 Inference for Regression

in regression. Aside from this, ANOVA seems redundant; it repeats in less clear 
form information that is found elsewhere in the output. This is true in simple 
linear regression, but ANOVA comes into its own in  multiple regression,  the 
topic of the next chapter.  

     T-bills and   inflation.     Figure 12.10    ( page 586 ) gives Excel output for the regres-
sion of the rate of return on Treasury bills against the rate of inflation during the 
same year.  Exercises 12.57  through  12.59  use this output.  

    12.57 A significant relationship?  The output reports  two  tests of the null 
hypothesis that regressing on inflation does  not  help to explain the 
return on T-bills. State the hypotheses carefully, give the two test statis-
tics, show how they are related, and give the common   P   -value.  

   12.58 The ANOVA table.  Use the numerical results in the Excel output to 
verify each of these relationships.

    (a)   The ANOVA equation for sums of squares.  

   (b)   How to obtain the total degrees of freedom and the residual degrees 
of freedom from the number of observations.  

   (c)   How to obtain each mean square from a sum of squares and its 
degrees of freedom.  

   (d)   How to obtain the   F    statistic from the mean squares.     

   12.59 ANOVA by-products. 

    (a)   The output gives   =r 0.50202   . How can you obtain this from the 
ANOVA table?  

   (b)   The output gives the regression standard error as   =s 2.1857  . How 
can you obtain this from the ANOVA table?       

    SECTION   12.3  SUMMARY  
 ●    The  analysis of variance (ANOVA) equation  for simple linear regression 

expresses the total variation in the responses as the sum of two sources: the 
linear relationship of   y   with   x   and the residual variation in responses for the 
same   x  . The equation is expressed in terms of  sums of squares.   

 ●   Each sum of squares has a  degrees of freedom.  A sum of squares divided 
by its degrees of freedom is a  mean square.  The residual mean square is the 
square of the regression standard error.  

 ●   The  ANOVA table  gives the degrees of freedom, sums of squares, and 
mean squares for total, regression, and residual variation. The  ANOVA 
F statistic  is the ratio   =F Regression MS/Residual MS  . In simple linear 
regression,   F    is the square of the   t   statistic for the hypothesis that regression 
on   x   does not help explain   y  .  

 ●   The  square of the sample correlation  can be expressed as   

Regression SS
Total SS

SSR
SST

2r = =

 and is interpreted as the proportion of the variability in the response variable 
y   that is explained by the explanatory variable   x   in the linear regression.  

     T-bills and   inflation.     Figure 12.10    ( page 586 ) gives Excel output for the regres-
sion of the rate of return on Treasury bills against the rate of inflation during the 

  APPLY YOUR KNOWLEDGE  
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61112.3 Some Details of Regression Inference

    SECTION   12.3  EXERCISES  
For  Exercises 12.55  and  12.56 , see  page 606 ; and for  12.57  
to  12.59 , see  page 610 .  

12.60 What’s wrong?  For each of the following 
statements, explain what is wrong and why.

   (a)   In simple linear regression, the standard error for a 
future observation is   s  , the measure of spread about the 
regression line.  

  (b)   In an ANOVA table, SSE is the sum of the deviations.  

  (c)   There is a close connection between the correlation   r   
and the intercept of the regression line.  

  (d)   The squared correlation   r2   is equal to   MSR/MST.       

   12.61 What’s wrong?  For each of the following 
statements, explain what is wrong and why.

   (a)   In simple linear regression, the null hypothesis of the 
ANOVA   F   test is   β =H : 00 0   .  

  (b)   In an ANOVA table, the mean squares add; in other 
words,   = +MST MSR MSE.    

  (c)   The smaller the   P  -value for the ANOVA   F   test, the 
greater the explanatory power of the model.  

  (d)   The total degrees of freedom in an ANOVA table are 
equal to the number of observations   n  .      

  U.S. versus overseas stock returns.   How are returns 
on common stocks in overseas markets related to returns 
in U.S. markets? Consider measuring U.S. returns by the 
annual rate of return on the Standard & Poor’s 500 stock 
index and overseas returns by the annual rate of return 
on the Morgan Stanley Europe, Australasia, Far East 
(EAFE) index. Both are recorded in percents. Here is part 
of the Minitab output for regressing the EAFE returns on 
the S&P 500 returns for the 29 years 1989 to 2017.  

 The regression equation is  
   = − +Eafe 3.11 0.820   S&P 

 Analysis of Variance 

 Source   DF  SS  MS  F 

 Regression    5821.3 
 Residual Error 

 Total   28  10454.7 

   Exercises 12.62  through  12.66  use this output. EAFE  

    12.62 The ANOVA table.  Complete the analysis of 
variance table by filling in the “Residual Error” row and 
the other missing items in the DF, MS, and F columns.  

   12.63   s   and   rr 2  .  What are the values of the regression 
standard error   s   and the squared correlation   r2  ?  

12.64 Estimating the standard error of the slope.  
The standard deviation of the S&P 500 returns for 
these years is 17.58%. From this and your work in the 
previous exercise, find the standard error for the least-
squares slope   b1  . Give a 90% confidence interval for the 
slope   β1   of the population regression line.  

12.65 Inference for the intercept?  The mean of the 
S&P 500 returns for these years is 12.01. From this 
and information from the previous exercises, find the 
standard error for the least-squares intercept   b0  . Use 
this to construct a 95% confidence interval. Finally, 
explain why the intercept   β0   is meaningful in this 
example.  

   12.66 Predicting the return for a future year.  Suppose 
the S&P annual return for a future year is 0%. Using the 
information from the previous four exercises, construct 
the appropriate 95% interval. Also, explain why this 
interval is or is not the same interval constructed in 
 Exercise 12.65 .   

Gross domestic product per capita and net 
savings.   The gross domestic product (GDP) measures 
the aggregate amount of good and services produced 
in an economy. Growing GDP is a primary focus 
of policymakers. A random sample of 38 emerging 
economies (countries) was taken to assess whether 
there was a positive linear relationship between GDP per 
capita and a country’s adjusted net savings.  17   Adjusted 
net savings is defined as a country’s net savings plus 
expenditures on education minus depletion of a country’s 
air, minerals, and forests. It is reported as a percent of the 
gross national income.  Figure 12.20   contains JMP output 
for the regression of the logarithm of GDP per capita 
(Lgdpc) on adjusted net savings (Sav).  Exercises 12.67  
through  12.74  concern this analysis. You can take it as 
given that an examination of the data shows no serious 
violations of the conditions required for regression 
inference.  

     FIGURE   12.20  JMP output for the regression of GDP per 
capita of 38 emerging economies on the country’s adjusted 
net savings, for  Exercises 12.67  to  12.74 .  

Bivariate Fit of Lgdpc by Sav

Linear Fit
Lgdpc = 7.6737865 + 0.0388454*Sav

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

Sum of
Squares

7.538713
35.947698
43.486411

Source
Model
Error
C. Total

Term
Intercept
Sav

Estimate
7.6737865
0.0388454

Std Error
0.208674
0.014138

t Ratio
36.77
2.75

Prob> |t|
<.0001*
0.0093*

DF
1

36
37

Mean Square
7.53871
0.99855

F Ratio
7.5497

Prob > F
0.0093*

0.173358

0.150396

0.999273

8.034844

38

Summary of Fit

Analysis of Variance

Parameter Estimates
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612 Chapter 12 Inference for Regression

   CHAPTER 12 REVIEW EXERCISES  
    12.75 What’s wrong?  For each of the following 
statements, explain what is wrong and why.

   (a)   The slope describes the change in   x   for a unit change 
in   y.    

  (b)   The population regression line is   = +y b b x.0 1     

  (c)   A 95% confidence interval for the mean response is 
the same width regardless of   x.    

  (d)   The residual for the   i  th observation is   −y yi iˆ        

   12.76 What’s wrong?  For each of the following 
statements, explain what is wrong and why.

   (a)   The parameters of the simple linear regression model 
are   b ,0      b ,1    and   s  .  

  (b)   To test   =H b: 0,0 1    you would use a   t   test.  

  (c)   For any value of the explanatory variable   x  , the 
confidence interval for the mean response will be wider 
than the prediction interval for a future observation.  

  (d)   The least-squares line is the line that maximizes the 
sum of the squares of the residuals.     

   12.77 Interpreting a residual plot.   Figure 12.21   
shows four plots of residuals versus   x  . For each plot, 
comment on the regression model conditions necessary 
for inference. Which plots suggest a reasonable fit to the 

12.67 Significance in two senses. 

   (a)   Provide an explanation for using the logarithm of 
GDP per capita as the response variable rather than GDP 
per capita.  

  (b)   Is there good evidence that adjusted net savings 
helps explain Lgdpc? (State the hypotheses, give a test 
statistic and   P  -value, and state a conclusion.)  

  (c)   What percent of the variation in Lgdpc among these 
economies is explained by a regression on adjusted net 
savings?  

  (d)   Use your findings in parts (a) and (b) as the basis for 
a short description of the distinction between statistical 
significance and practical significance.     

12.68 Estimating the slope.  Explain clearly what the 
slope   β1   of the population regression line tells us in this 
setting. Give a 95% confidence interval for this slope.  

   12.69 Predicting Lgdpc.  An additional calculation 
shows that the variance of the adjusted net savings 
for these 38 countries is   135.032sx =   . JMP labels the 
regression standard error   s   as “Root Mean Square 
Error” and the sample mean of the responses   y   as “Mean 
of Response.” Starting from these facts, give a 95% 
confidence interval for the mean Lgdpc for all countries 
with an adjusted net savings   =x 15.0  . [ Hint:  The least-
squares regression line always goes through   x y( , ).  ]  

12.70 Predicting Lgdpc.  Will a 95% prediction 
interval for a country’s Lgdpc when   =x 15.0   be wider 
or narrower than the confidence interval found in the 
previous exercise? Explain why we should expect this 
result. Then give the 95% prediction interval.  

12.71   F    versus   t   .  How do the ANOVA   F   statistic and its 
P  -value relate to the   t   statistic for the slope and its 
P  -value? Identify these results on the output and verify 
their relationship (up to roundoff error).  

12.72 The regression standard error.  How can you 
obtain   s   from the ANOVA table? Do this, and verify that 
your result agrees with the value that JMP reports for   s  .  

12.73 Squared correlation.  JMP gives the squared 
correlation   r2   as “RSquare.” How can you obtain   r2   from 
the ANOVA table? Do this, and verify that your result 
agrees with the RSquare reported by JMP.  

12.74 Correlation.  The regression in  Figure 12.20  
takes adjusted net savings as explaining Lgdpc. As an 
alternative, we could take Lgdpc as explaining adjusted 
net savings. We would then reverse the roles of the 
variables, regressing Sav on Lgdpc. Both regressions 
lead to the same conclusions about the correlation 
between Lgdpc and Sav. What is this correlation   r  ? 
 Is there good evidence that it is positive?    

linear regression model? What actions might you take to 
remedy the problems in each of the other plots?

       12.78 Are the results consistent?  A researcher surveyed 
=n 214   hotel managers to assess the relationship 

between customer-relationship management (CRM) and 
organizational culture. 18  Each variable was an average 
of more than twenty-five 5-point Likert survey responses 
and, therefore, was treated as a quantitative variable. 
The researcher reports a sample correlation of   =r 0.74   and 
an ANOVA   F   statistic of 60.35 for a simple linear regression 
of CRM on organizational culture. Using the relationship 
between testing   ρ =H : 00    and testing   β =H : 00 1   , show that 
these two results are not consistent. ( Hint:  It’s far more 
likely that there was a typo and   =r 0.47.  )  

   12.79 College debt versus adjusted in-state costs.  
Kiplinger’s “Best Values in Public Colleges” provides a 
ranking of U.S. public colleges based on a combination 
of various measures of academics and affordability. 19  
We’ll consider a random collection of 40 colleges from 
Kiplinger’s 2018 report and focus on the average debt in 
dollars at graduation (AveDebt) and the in-state cost per 
year after need-based aid (InCostAid). BESTVAL

   (a)   A scatterplot of these two variables with a smoothed 
curve is shown in  Figure 12.22  . Describe the relationship. 
Are there any possible outliers or unusual values? Does 
a linear relationship between InCostAid and AveDebt 
seem reasonable?
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61312.3 Some Details of Regression Inference

     FIGURE   12.22   Scatterplot of average debt (in 
dollars) at graduation versus the in-state cost per 
year (in dollars) after need-based aid, for 
 Exercise 12.79 .  
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      (b)   Based on the scatterplot, approximately how much 
does the average debt change for an additional $1000 of 
annual cost?  

  (c)   The University of North Carolina at Chapel Hill is a 
school with an adjusted in-state cost of $4843. Discuss the 
appropriateness of using this data set to predict the average 
debt at graduation for students attending this school.     

   12.80 Can we consider this an SRS?  Refer to the 
previous exercise. The report states that Kiplinger’s 
rankings focus on traditional four-year public colleges 
with broad-based curricula and on-campus housing. 
Each year, the researchers start with more than 500 
schools and then narrow the list down to roughly 120 
based on academic quality before ranking them. The data 
set in the previous exercise is an SRS from Kiplinger’s 
published list of 100 schools. When investigating the 
relationship between the average debt and the in-state 

     FIGURE   12.21  Four plots of regression residuals versus explanatory variable  x , for  Exercise 12.77 .  
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614 Chapter 12 Inference for Regression

   12.83 Predicting college debt: Other measures.  Refer 
to  Exercise 12.79 . Let’s now look at AveDebt and its 
relationship with all six measures available in the data 
set. In addition to the in-state cost after aid (InCostAid), 
we have the admittance rate (Admit), the four-year 
graduation rate (Grad4Rate), the in-state cost before aid 
(TotCostIn), the out-of-state cost before aid (TotCostOut), 
and the out-of-state cost after aid (OutCostAid). 

BESTVAL

   (a)   Generate scatterplots of each explanatory variable 
and AveDebt. Do all these relationships look linear? 
Describe what you see.  

  (b)   Fit each of the explanatory variables separately 
and create a table that lists the explanatory variable, 
regression standard error   s  , and the   P  -value for the test 
of a linear association.  

  (c)   Which variable appears to be the best single 
explanatory variable of average debt at graduation? 
Explain your answer.     

   12.84 Yearly number of tornadoes.  The Storm 
Prediction Center of the National Oceanic and 
Atmospheric Administration maintains a database of 
tornadoes, floods, and other weather phenomena.  Table 
12.6  summarizes the annual number of tornadoes in the 
United States between 1953 and 2017. 20  (Note: These are 
time series data with a very weak correlation, so simple 
linear regression is reasonable here. See  Chapter 14  for 
methods designed specifically for use with time series.) 

TWISTER

    (a)   Make a plot of the total number of tornadoes by year. 
Does a linear trend over years appear reasonable? Are there 
any outliers or unusual patterns? Explain your answer.  

  (b)   Run the simple linear regression and summarize 
the results, making sure to construct a 95% confidence 
interval for the average annual increase in the number 
of tornadoes.  

  (c)   Obtain the residuals and plot them versus year. Is 
there anything unusual in the plot?  

  (d)   Are the residuals Normal? Justify your answer.  

  (e)   The number of tornadoes in 2004 is much larger 
than expected under this linear model. Remove this 
observation and rerun the simple linear regression. 
Compare these results with the results in part (b). 
Do you think this observation should be considered an 
outlier and removed? Explain your answer.     

   12.85 Plot indicates model assumptions.  Construct a 
plot with data and a regression line that fits the simple 
linear regression model framework. Then construct 
another plot that has the same slope and intercept but a 
much smaller value of the regression standard error   s  .  

   12.86 Significance tests and confidence intervals.  The 
significance test for the slope in a simple linear regression 
gave a value   =t 2.08   with 18 degrees of freedom. Would 
the 95% confidence interval for the slope include the 
value zero? Give a reason for your answer.  

cost after adjusting for need-based aid, is it reasonable 
to consider this to be an SRS from the population of 
interest? Write a short paragraph explaining your 
answer.  

   12.81 Predicting college debt.  Refer to  Exercise 12.79 . 
 Figure 12.23   contains JMP output for the simple linear 
regression of AveDebt on InCostAid. BESTVAL

   (a)   State the least-squares regression line.  

  (b)   The University of California at Irvine is one school 
in this sample. It has an in-state cost of $9621 and an 
average debt at graduation of $20,466. What is the 
residual?  

  (c)   Construct a 95% confidence interval for the slope. 
What does this interval tell you about the change in 
average debt for a $500 change in the in-state cost?

          12.82 More on predicting college debt.  Refer to the 
previous exercise. Purdue University has an in-state cost 
of $7788 and an average debt at graduation of $27,530. 
Texas A&M University has an in-state cost of $11,396 and 
an average debt at graduation of $24,072. BESTVAL

   (a)   Using your answer to part (a) of the previous 
exercise, what is the predicted average debt at graduation 
for a student attending Purdue University?  

  (b)   What is the predicted average debt at graduation for 
a student attending Texas A&M University?  

  (c)   Without doing any calculations, would the standard 
error for the estimated average debt be larger for Purdue 
University or the Texas A&M University? Explain your 
answer.     

     FIGURE   12.23  JMP output for the regression of average 
debt (in dollars) at graduation on the in-state cost (in 
dollars) per year, for  Exercise 12.81 .  

Bivariate Fit of AveDebt by InCostAid

Linear Fit
AveDebt = 16936.823 + 0.5125517*InCostAid

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

Sum of
Squares

140634478
936538927

1077173404

Source
Model
Error
C. Total

Term
Intercept
InCostAid

Estimate
16936.823
0.5125517

Std Error
3055.679
0.214567

t Ratio
5.54
2.39

Prob> |t|
<.0001*
0.0220*

DF
1

38
39

Mean Square
140634478
24645761

F Ratio
5.7062

Prob > F
0.0220*

0.130559
0.107679
4964.45
23991.2

40

Summary of Fit

Analysis of Variance

Parameter Estimates
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61512.3 Some Details of Regression Inference

 Employees  Rooms  Employees  Rooms 

 1200  1388  275   424 

 180   348  105   240 

 350   294  435   601 

 250   413  585  1590 

 415   346  560   380 

 139   353  166   297 

 121   191  228   108 

    (a)   To what extent can the number of employees be 
predicted by the size of the hotel? Plot the data and 
summarize the relationship.  

  (b)   Is this the type of relationship that you would 
expect to see before examining the data? Explain why or 
why not.  

  (c)   Calculate the least-squares regression line and add it 
to the plot.  

  (d)   Give the results of the significance test for the 
regression slope with your conclusion.  

  (e)   Find a 95% confidence interval for the slope.     

   12.90 How can we use the results?  Refer to the 
previous exercise.

   (a)   If one hotel had 100 more rooms than another hotel, 
how many additional employees would you expect the 
first hotel to have? HOTSIZE   

   12.87 Predicting college debt: One last measure.  Refer 
to  Exercises 12.79 ,  12.81 , and  12.83 . Given the in-state 
cost of attending a college prior to and after aid, another 
measure of potential college debt is the average amount 
of need-based aid. Create this new variable by subtracting 
these two costs, and investigate its relationship with 
average debt at graduation. Write a short paragraph 
summarizing your findings. BESTVAL   

   12.88 Brand equity and sales.  Brand equity is one 
of the most important assets of a business. It includes 
brand loyalty, brand awareness, perceived quality, and 
brand image. One study examined the relationship 
between brand equity and sales using simple linear 
regression analysis. 21  The correlation between brand 
equity and sales was reported to be 0.757, with a 
significance level of 0.001.

   (a)   Explain in simple language the meaning of these 
results.  

  (b)   The study examined quick-service restaurants in 
Korea and was based on 394 usable surveys from a total 
of 950 that were distributed to shoppers at a mall. Write 
a short narrative commenting on the design of the study 
and how well you think the results would apply to other 
settings.     

   12.89 Hotel sizes and numbers of employees.  A 
human resources study of hotels collected data on the 
hotel size, measured by number of rooms, and the 
number of employees for 14 hotels in Canada. 22  Here are 
the data: HOTSIZE

   TABLE   12.6  Annual number of tornadoes in the United States between 1953 and 2017  

 Year 
 Number 

of tornadoes  Year 
 Number 

of tornadoes  Year 
 Number 

of tornadoes  Year 
 Number 

of tornadoes 

 1953  422  1970  653  1987  656  2004  1817 

 1954  550  1971  889  1988  702  2005  1265 

 1955  593  1972  741  1989  856  2006  1103 

 1956  504  1973  1102  1990  1133  2007  1096 

 1957  858  1974  945  1991  1132  2008  1692 

 1958  564  1975  919  1992  1297  2009  1156 

 1959  604  1976  834  1993  1173  2010  1282 

 1960  616  1977  852  1994  1082  2011  1692 

 1961  697  1978  789  1995  1235  2012  936 

 1962  657  1979  855  1996  1173  2013  891 

 1963  463  1980  866  1997  1148  2014  881 

 1964  704  1981  782  1998  1424  2015  1183 

 1965  897  1982  1047  1999  1339  2016  985 

 1966  585  1983  931  2000  1075  2017  1406 

 1967  926  1984  907  2001  1215 

 1968  660  1985  684  2002  934 

 1969  608  1986  765  2003  1374 
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616 Chapter 12 Inference for Regression

  (b)   Give a 95% confidence interval for your answer in 
part (a).  

  (c)   The study collected these data from 14 hotels in 
Toronto. Discuss how well you think the results can 
be generalized to other hotels in Toronto, to hotels in 
Canada, and to hotels in other countries.     

   12.91 Check the outliers.  The plot that you generated in 
 Exercise 12.89  has two observations that appear to be 
outliers. HOTSIZE

   (a)   Identify these points on a plot of the data.  

  (b)   Rerun the analysis with the other 12 hotels, and 
summarize the effect of the two possible outliers on the 
results that you gave in  Exercise 12.89 .     

   12.92 Selling a large house.  Among the houses for 
which we have data in  Table 12.5  ( page 595 ), just four 
have floor areas of 1800 square feet or more. Give a 
90% confidence interval for the mean selling price of 
houses with floor areas of 1800 square feet or more. 

HSIZE   

   12.93 Agricultural productivity.  Few sectors of the 
economy have increased their productivity as rapidly as 
agriculture. Let’s describe this increase. Productivity is 
defined as output per unit input. “Total factor 
productivity” (TFP) takes all inputs (labor, capital, fuels, 
and so on) into account. The data set AGPROD contains 
TFP for the years 1948–2015. 23  The TFP entries are index 
numbers; that is, they give each year’s TFP as a percent 
of the value for 1948. AGPROD

   (a)   Plot TFP against year. It appears that around 1980, 
the rate of increase in TFP changed. How is this apparent 
from the plot? What was the nature of the change?  

  (b)   Regress TFP on year using only the data for the years 
1948–1980. Add the least-squares line to your scatterplot. 
The line makes the finding in part (a) clearer.  

  (c)   Give a 95% confidence interval for the annual rate of 
change in TFP during the period 1948–1980.  

  (d)   Regress TFP on year for the years 1981–2015. Add 
this line to your plot. Give a 95% confidence interval 
for the annual rate of improvement in TFP during these 
years.  

  (e)   Write a brief report on trends in U.S. farm 
productivity since 1948, making use of your analysis in 
parts (a) through (d).     

   12.94 CEO pay and gross profits.  Starting in 2018, 
publicly traded companies must disclose their workers’ 
median pay and the compensation ratio between a 
worker and the company’s CEO. Does this ratio say 
something about the performance of the company? 
CNBC collected this ratio and the gross profits per 
employee from a variety of companies. 24  CNBC

   (a)   Generate a scatterplot of the gross profit per 
employee (Profit) versus the CEO pay ratio (Ratio). 
Describe the relationship.  

  (b)   To compensate for the severe right skewness of both 
variables, take the logarithm of each variable. Generate 
a scatterplot and describe the relationship between these 
transformed variables.  

  (c)   Fit a simple linear regression for log Profits versus 
log Ratio.  

  (d)   Examine the residuals. Are the model conditions 
approximately satisfied? Explain your answer.  

  (e)   Construct a 95% confidence interval for   β1   and 
interpret the result in terms of a percent change in   y   for 
a percent change in   x  .              
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